
A Type Theory with Re�ection

by

Stefania Dumbrava

Thesis for the Conferral of a Master of Science in Smart Systems

Dr. Florian Rabe

Prof. Dr. Michael Kohlhase

(Jacobs University)

Date of Submission:

Contents

1 Introduction 2

2 Related Work 6
2.1 State of the Art . 6
2.2 State of the Craft . 10

3 Basic Type Theory 13
3.1 Syntax . 13
3.2 Proof Theory . 14
3.3 Semantics . 17
3.4 Soundness . 18

4 Re�ecting Terms 20
4.1 Syntax . 20
4.2 Proof Theory . 23
4.3 Semantics . 31
4.4 Soundness . 38

5 Towards a General Theory of Re�ection 45
5.1 Re�ecting Morphisms . 45
5.2 Re�ection Perspectives . 52

6 Implementation 56
6.1 MMT with Term Re�ection . 58

6.1.1 Syntax . 58
6.1.2 Proof Theory . 60

6.2 MMT with Morphism Re�ection . 64

7 Conclusion 69

1

Abstract

Re�ection is a mechanism central to human intelligence in the large and, in particular,
to reasoning and to its expression through natural and formal languages. Its fundamental
role is that it provides the means to talk about concepts and their properties, by enabling
the uni�cation of di�erent levels of abstraction.

This thesis emphasizes the importance of re�ection, as shown by its multifaceted use
in many areas related to mathematics and computer science and presents theoretical and
practical aspects related to its introduction as a primitive in a type theoretical framework.

Our proposed solution consists of extending a basic type theory with primitives for
the re�ection of terms and morphisms. This provides us with inductive and (weakly)
co-inductive types, which can be seen as theory models and morphisms, respectively. We
elaborate a type theory with re�ected terms and outline a corresponding methodology
for developing similar re�ection extensions for morphisms and signatures.

Also, we present work on enriching the modular, foundation-independent MMT frame-
work with re�ection capabilities. To this end, we implement the type theoretical exten-
sions for the re�ection of terms and for the re�ection of morphisms as separate, orthogo-
nal, plug-in features, which we closely document.

Acknowledgements

The author is very grateful to Dr. Florian Rabe and to Prof. Dr. Michael Kohlhase, for
their continuous collaboration, support and guidance, as well as to all members of the
KWARC group, for their encouragement, feedback and numerous inspiring discussions.

The original idea for the topic together with the general framework on top of which
the corresponding implementation was carried out were provided by Dr. Florian Rabe.

Chapter 1
Introduction

Epistemological inquiry into the nature of mathematics runs like a red thread through
the development of modern logic, as it was marked by three main philosophical stances:
platonism (logicism), formalism and intuitionism.

The quest for an appropriate metalanguage that could serve as a foundation for math-
ematics traces its roots back to Leibniz's dream in the 17th century. Leibniz envisioned
a symbolic language general enough to represent human thought (�characteristica uni-
versalis�), yet precise enough to enable computation in a framework mirroring human
reasoning (�calculus ratiocinator�), in which proofs could be formalized using a �xed set
of inference rules and veri�ed algorithmically. The project's scope was, nonetheless, too
ambitious given the existing limitations in the �eld of logic, a discipline which had been
and would continue to remain stagnated in Aristotelian tradition until Frege's �Begri�ss-
chrift� [Fre79].

Driven to realize Leibniz's idea, Frege founded the logicist movement through his
seminal work on establishing logic as a foundation for mathematics. A precursor of and
vastly intertwined with platonism during the period, the philosophical standpoint stem-
ming from the two conjectured that mathematical objects and truths exist independently
of our universe. In his pursuit to reduce mathematical (speci�cally, arithmetical) axioms
to logical truths, Frege revolutionized the �eld, by introducing the language of predicate
logic. However, the axiomatic system in his formalization of naive set theory was shown
to be inconsistent by Russell, due to a naive formulation of the comprehension axiom,
according to which, given any well-de�ned mathematical property, one can construct
the set of the elements that satisfy it. Russell discovered that one could thus de�ne a
paradoxical construction of �a set containing all sets that are not members of themselves�.

Ramsey distinguished between this kind of �logical� paradoxes and �semantical� ones,
known from antiquity to lead to sophisms, such as the Liar's Paradox (�This sentence is
false�) [Ram26]. While the latter class of paradoxes anticipates Gödel's result and poses
the di�cult problem that natural language is semantically closed, vague and ambiguous,
the former can be circumvented by introducing a layering of the universe of discourse.
Indeed, Russell solved the issue of �vicious circularity� or impredicativity by proposing a
hierarchy of types, in which the objects of each type are built exclusively from objects of
the lower level types. Relying on this construction, Russell and Whitehead continued the
e�orts towards a complete formalization of mathematics in their �Principia Mathematica�

2

[WR13], but their theory was more complex and far less intuitive than those based on set
theory. A simpli�ed version of this system was given decades later by Church's simply
typed λ-calculus [Chu40].

Following Frege and Russell, another approach to solving foundational problems, for-
malism, was proposed by Hilbert [Hil23]. According to this philosophical perspective,
mathematical objects and truths do not exist, but rather formal systems and derivations
in them. Hilbert's program set to establish mathematics on a formal foundation, through
a complete set of axioms together with a proof of its consistency using arithmetic. This
endeavor was, however, demonstrated to be unrealizable by Gödel, whose Second Incom-
pleteness Theorem showed that any consistent deduction system strong enough to prove
Peano's postulates of elementary arithmetic cannot prove its own consistency. Gödel's fa-
mous proof of the result [G�31] is one of the earliest examples of working with self-reference
(see Section 2.1).

A similar idea to that of Russell's rami�ed type theory is that of the von Neumann
class of hereditary sets [Neu25]. In the von Neumann, Bernays, Gödel formalization of
set theory (NBG), loops are avoided by considering two sorts: sets and proper classes,
the latter of which has sets as elements, but cannot be contained in other sets or classes.
This theory motivated the development of another formal account of set theory (ZF),
by Zermelo, Skolem and Fraenkel, which re�ned the comprehension axiom, allowing sets
to be de�ned by comprehension only by collecting elements of a pre-existing set that
satis�es a well-formed property. ZF, optionally extended with the axiom of choice (ZFC),
is considered the standard axiomatic theory and one of the most common foundations
for mathematics.

The main opposing view to formalism and platonism was introduced by Brouwer
[Bro07] and argued towards a constructivist approach, in which mathematical objects
and their properties are creations of the human mind. According to Brouwer, intuition-
istic truth means provability, although, in an informal sense, relying on intuition. In
this setting, several constructive set theories and type theories have been proposed as
foundations for mathematics.

Arguably among the most prominent axiomatizations realizing constructive set the-
ories are Myhill's Intuitionistic Zermelo Fraenkel (IZF) [Myh73], essentially ZFC without
the axiom of choice and the law of the excluded middle, and Aczel's Constructive Zermelo
Fraenkel (CZF) [AR00], giving a predicative account of IZF. On the type theory side,
a leading account of constructivism is given by Martin-Löf's Intuitionistic Type Theory
(ITT) [ML84], which is at the base of proof-systems such as LCF (see Section 2.2), HOL
(see Section 2.2) and of the logical framework LF (see Section 2.2). Other important con-
structive type theories , in the sense of Martin-Löf, are Coquand, Huet and Paulin's
Calculus of Inductive Constructions (CIC) [CH85], implemented in the Coq prover (see
Section 2.2), and Computational Type Theory (CTT) [R. 86], implemented in the Nuprl
system (see Section 2.2).

All of the above type theories are generalizations of simply typed lambda calculus,
such that a type is inhabited, only if there is a valid mathematical construction for
that type. The main type constructors encountered in type theory give rise to �nite
types, equality types, Π-types or dependent product types (see Section 2.1), Σ-types or
dependent sum types, inductive types (see Section 2.1) and universes.

From what has been presented so far, one can see that the foundational accounts of

3

mathematics can be divided into those based on set-theory and those based on type-
theory. Nonetheless, it is also worth mentioning that recent advances in category
theory led to the formulation of an alternative basis for mathematics. The central idea
here is that of a �topos� [LS11], which can de�ne its own local mathematical framework,
essentially a generalization of set-theoretical models.

The problem of formalizing mathematics remained only of theoretical interest until
the invention of modern computers. While this development enabled the mechanization
of mathematics, adding more ease and reliability to mathematical practice, it also reaf-
�rmed the importance of �nding suitable foundations on which large-scale formalization
projects can be conducted. Moreover, despite the deliberate e�orts to escape circularity
we described above, such a separation of the levels of abstraction may not be always
desirable in practice. In fact, as we will outline in Section 2.1, there are numerous appli-
cations to being capable of manipulating meta-level entities inside the object-level. The
question thus becomes how to con�ate these levels of generality, ultimately into a single
level, while avoiding contradictions. In order to obtain such a self-referential language
some form of re�ection is necessary [Per85].

As we have brie�y sketched, the journey to realize Leibniz's dream spanned decades
and unraveled the central foundational problem of mathematics, which has been at the
heart of research in the �elds of mathematics, philosophy, logic and, with the advent of
the computer age, automated theorem proving. Moreover, this quest has been notably
intertwined with exploring the idea of re�ection and the challenges it brings forth.

Although re�ection is a fundamental notion, epitomizing the very essence of human
cognition that Arti�cial Intelligence envisions to emulate, its treatment in the large or
even within the same branch, for example in automated theorem proving, is disconcert-
ingly heterogeneous, as we will see in Section 2.2. Hence, there is a real need to establish
the conceptual foundations of re�ection in a uniform manner, powerful enough to unify
its di�erent instances.

An ideal setting for this endeavor would be a logic-neutral language, capable of rep-
resenting logical and mathematical theories, meta-theories and their interrelations. Such
a language is represented by the �Module system for the development of Mathematical
Theories� (MMT) [Rab09], in which we aim to integrate a type theory with re�ection,
study its properties and formalize examples from category theory, mathematics and logic.

This thesis is organized as follows. In Section 2, we introduce re�ection, inductive
and co-inductive types (see Section 2.1) and then give a brief overview of related work
in systems such as LCF, Nuprl, HOL, Coq, Chiron and logical frameworks (LF and
MMT)(see Section 2.2).

Next, in Section 3, we present the basic type theory we will enrich with re�ective
features, outlining its syntax and proof theory, together with its semantics and the corre-
sponding soundness check. Section 4 advances the term re�ection addition to the minimal
type theory from the previous section. Along the same lines as in Section 3, we introduce
the needed re�ection primitives at the syntax and inference level (Section 4.1 and Section
4.2), as well as their interpretation at the semantics level (Section 4.3) along with the a
soundness proof (Section 4.4).

We give an outlook towards a general theory of re�ection in Section 5. Speci�cally,
we sketch and illustrate the syntax and inference rules of morphism re�ection in Section
5.1. We brie�y discuss an approach towards elaborating signature re�ection in Section

4

5.2, outlining the emerging symmetries between the presented re�ection extension that
characterize a signature-based re�ection theory. Section 6 o�ers a description of the im-
plementational aspects of constructing MMT-plugins for term re�ection (Section 6.1) and
morphism re�ection (Section 6.2), respectively. We present our conclusions in Section 7.

5

Chapter 2
Related Work

2.1 State of the Art

Inherently, the notion of re�ection permits languages to attain self-referentiality. A com-
mon example of this is given by natural language, where one can di�erentiate the deno-
tation of a word from its connotation, by using inverted comas or quoting, i.e What is
the meaning of �meaning�?.

Re�ection is prevalent not only in natural language, but also in the theory of formal
systems, where it has diverse applications. In Section 2.1, we give a general overview
of how re�ection occurs and is handled in computer science and mathematics. As will
be illustrated in Section 4 and Section 5.1, we single out two forms of re�ection, namely
that of the terms and of the morphisms out of a language. In the former case we obtain
inductive types and, in the latter, weakly coinductive or dependent record types. These
are introduced in Section 2.1 and Section 2.1.

Re�ection

From a computational perspective, re�ection is the ability of a system to manipulate as
data a representation of its internal state. Re�ective mechanisms enable programs to
perform �re�ective computation�, aimed at solving problems and at returning informa-
tion about the internal problem domain. Consequently, programs can observe and reason
about their state (introspection) and, possibly, modify their execution at runtime as a
result (intercession). The practical importance of re�ection arises from its various appli-
cations in software engineering, where it is used in debugging and performance testing,
and in arti�cial intelligence, where it serves the purpose of enabling the self-optimization,
adaptation and control of learning systems [Mae87].

In the study of programming languages, the use of �computational re�ection�
originated in Brian Smith's work on developing Lisp [Smi82, Smi84] as a framework for
extensible programming, which allows the user to write programs that modify the language
itself. He distinguished between structural re�ection, implemented in 2-Lisp and dealing
with the representation of the static structure of a system, and procedural (behavioral)
re�ection, implemented in 3-Lisp and dealing with the system's ongoing activity. The
re�ective framework of 3-Lisp relies on a �re�ective tower� mechanism, i.e a stack of

6

circular meta-interpreters, each interpreted by the one above it, with the user's program
running at ground level. Intuitively, through �re�ection� and the inverse operation of
�rei�cation�, higher-class representation constructs (data) can be thought of as turning
into lower-class implementation constructs (programs) and vice-versa. More speci�cally,
data structures of the nth level program can be �re�ected� as values of the (n + 1)th

level interpreter, allowing the latter to observe its implementation. Conversely, through
�rei�cation�, data structures of the (n + 1)th level interpreter are made available to the
nth level program it is running, allowing the latter to observe its execution.

In mathematics, re�ection arises naturally, since usually no distinction is made
between syntax and semantics, i.e syntactic expressions are identi�ed with their mean-
ing. Indeed, when iteratively developing theories, working mathematicians de�ne certain
mathematical structures, �seal� them, and use instantiations of those structures (models)
as proper objects, in order to prove theorems about their properties (model functors)
(see Section 5.1 for examples). However, these theorems often cannot be stated within
the framework of the structures themselves and are, essentially, meta-theorems.

Two interesting instances of this observation were made by Aiello and Weyrauch
in [AW75]. Firstly, they pointed out that the notion of a ��nite group� cannot be formal-
ized in the �rst order language of group theory and needs another meta-level of abstrac-
tion, for instance set theory, in order to be axiomatized. Secondly, the �duality principle�
in projective geometry provides a nice setting in which one could use �re�ection� or �rei�-
cation� to establish results in a dual theory, by analogy. According to the aforementioned
principle, given a projective space of dimension N , any theorem that is valid in a subspace
of dimension R is also valid in the complementary subspace of dimension N −R− 1. To
give an example, Pascal's Theorem stating that �for any hexagon inscribable in a conic
section, the intersection points of the pairs of opposite sides are collinear� can be con-
nected to Brianchon's Theorem stating that �for any hexagon circumscribed about a conic
section, the polygon diagonals are concurrent�, by regarding points as the �re�ection� of
lines and the property of �collinearity� as the �re�ection� of concurrency. However, there
are also cases where re�ection is explicitly used. For example, when performing symbolic
computations such as di�erentiation, integration, linear algebra, matricial and polyno-
mial operations, as well as simpli�cations (rewriting) of algebraic expressions, one is not
interested in the value of the elements, but in their syntactic form. Consequently, in these
cases, one actually uses the mathematical elements as data objects, essentially working
with their �quotation� (re�ection).

In mathematical logic, one can regard logical theories as object-level constructs,
de�ned within a meta-language. Through re�ection, the meta-level syntax and seman-
tics may be �quoted� (re�ected) inside the logic, such that formulas and proofs at the
object-level may refer to corresponding entities at the meta-level. As mentioned in the
introduction (see Section 1), a famous example of re�ection is that used by Gödel to
establish the incompleteness of Hilbert's axiomatic system based on Peano Arithmetic
(PA). As seen in the preliminaries, this is related to the Liar's Paradox, if one is to replace
�this sentence� with a statement G in a theory T and �false� with �not provable, to obtain
�G is not provable in T�. The key idea behind the proof is to encode metamathematical
statements, denoted by formulas and proofs in PA, as natural numbers in the arithmetic
object language and to express the provability predicate as a logical formula. Thus, by
taking a provable formula Φ in PA, its re�ection dΦe in N and the provability predicate

7

Provable(dΦe), de�nable as ∃x.Proof(x, dΦe), one can state the following sentence which
is true, but undecidable in PA: PA ` Φ ⇔ ¬Provable(Φ). This re�ection mechanism is
also called implicit re�ection, since provability is represented implicitly by an existential
quanti�er, which does not give any speci�cation of the proof.

Gödel's result impacted not only the foundations of mathematics, but also those of
formal veri�cation. Indeed, if one were to strengthen an axiomatic system with its
consistency assertion, via implicit re�ection, one would obtain a new axiomatic system,
with a di�erent provability predicate and consistency assertion. The operation can be
in�nitely iterated resulting in a �re�ective tower� [Fef62] of theories, which cannot be
formally veri�ed. Nevertheless, this problem can be circumvented, by following a con-

structivist paradigm and de�ning a form of explicit re�ection, based on a provability
predicate employing a family of explicit proof terms [Art99,Gan99]. This form of re�ec-
tion is implemented in Nuprl (see Section 2.2).

In automated theorem proving, one also distinguishes between the object language
and the meta-language [ACS86]. In this setting, the object language, be it a logic, a
formal language, a deductive system or their interpretation, provides the �ground level� on
which proofs are produced. The meta-language, used to talk about the object language,
contains the internal representation of the latter. This large-scale re�ection enables the
implementation of decision procedures, together with its correctness properties, directly
as functions in the logic of the prover.

Indeed, considering a formula F and its rei�cation into an abstract representation
bF c, a proof of F can be obtained by re�ection, through executing the procedure on
bF c and applying the soundness lemma, as depicted in Figure 2.1. In e�ect, this allows
to transform theorem proving and explicit proof steps in the object-level theory into
evaluation/computation and implicit proof steps in the meta-level theory.

Given that the meta-language has fewer primitives than the object language, it may
be easier/more economical to prove meta-theorems certifying the provability of certain
results at the meta-level, than to give their proofs explicitly at the object level. Also,
through re�ection, one can verify the correctness of derived object-level results and can
reliably add more e�cient, untrusted reasoning principles, thus ensuring the extensibility
and scalability of formalization projects carried out in the system.

Another form of re�ection, namely small-scale re�ection, is used in the SSRe�ect
module for the Coq proof assistant (see Section 2.2). This technique facilitates the local
interchangeability of logical and symbolical representations inside a proof, by applying the
reflect predicate. This allows the user to replace deductive steps by computation steps,
taking advantage of the fact that the bool inductive type can be used as a rei�cation of
the Prop type.

Inductive Types

Inductive types are central to Martin-Löf's constructive type theory. In set theory,
they correspond to the smallest set consistent with certain formation rules. Similarly, in
type theory, inductive types can be seen as the closure over the set of the type's basic
constructors. They were introduced in λ-calculus by Hagino [Hag87] and in dependent
type theory by Coquand [CP90].

An inductive type is obtained constructively, through an inductive de�nition, fol-

8

Object Level

Meta Level

F: prop

bFc : form

dΦe: proof of dbFce

Φ : proof bF c

rei�cation re�ection

Figure 2.1: Re�ection Scheme

lowing a �bottom-up� approach (hence the intuition behind our notation ↓ S in Section
5.2). Essentially, in the beginning of its creation, the only elements in the set of a given
inductive type are its �founders� (basic constructors/base cases) and one can then in-
crementally populate the type, by using its constructors to combine these elements into
new ones. These constructors are given by the introduction forms/rules and provide a
canonical way of forming elements of that type through a �nite number of applications.
Conversely, through elimination forms/rules, objects of the inductive type can be used
to de�ne objects of other types.

In category-theoretical terms, we can think of inductive types as freely generated
by their introductory forms (surjective operators). Also, they form initial objects in the
category of algebras for an endofunctor, whose elimination form can be expressed in terms
of the universal morphism mapping out of them.

In order to reason about inductive types, we need a way to analyze their inhabitants.
To this end, inductive types provide the principles for conducting proofs-by-induction
(structural induction) and for de�ning functions from them, via case analysis over the
constructors and (primitive) recursion.

Common examples of inductive types are the natural numbers (see Section 4), pairs,
lists, trees, booleans, logical quanti�ers and connectives.

Coinductive Types. Dependent Record Types

Coinductive types follow the set-theory intuition of de�ning the largest set consistent
with a certain of formation rules. Dual to inductive types, which enable the construction
of data structures and use recursion, coinductive come with basic operation for destruc-
ting values and are usually de�ned through recursion. Examples of coinductive types are
streams and in�nite lists.

Essentially, coinductive types can be seen as dependent record types. We de�ne a
record to be a tuple of labled �elds 〈L1 = t1, · · · , Ln = tn〉, where Li are string labels
and ti corresponding assignment, which can in turn be typed by Ti. A dependent record
type is given by a record consisting of labeled types 〈L1 : T1, · · · , Ln : Tn〉, where the
types Ti of each label Li depends on the types of the preceding ones. The operation of
performing �eld selection is called projection and can essentially be seen as a destructor

9

for the type.
In type theory, dependently-typed records have been studied in the context of devel-

oping modular systems and of formalizing mathematical structures, as well as abstract
datatypes with their speci�cation.

2.2 State of the Craft

LCF

The LCF system [Mil72] is a logic-independent interactive proof-checking system imple-
mented in ML and based on the logic of computable functions. The semantics of the
logic is given by partially ordered sets with respect to termination properties. The pri-
mary focus of the logic design was to allow reasoning about computable functions, in
particular about recursion schemes. This was realized by treating recursive de�nitions as
�xed-points of functions and by introducing the principle of �xed-point induction.

On the practical side, LCF is regarded as seminal to the technological development
of theorem provers, given the functionality it introduced. One of its most important
aspects is that it permits users to write their own proof search tactics using arbitrary
computation, without a�ecting the soundness of the proof checker, which only depends
on a relatively small, isolated kernel of code. To this e�ect, the system provides high
�exibility and extensibility. Also, more control and proof modularity can be achieved via
the re�nement of proof obligations into subgoals.

As a result, almost all proof systems are in�uenced by LCF, with HOL (Section 2.2)
being its direct descendent and with Nuprl (Section 2.2) providing a variation of the
language.

Nuprl

Nuprl (�new pearl�) [R. 86] is a proof-development system for constructive mathematics,
based on a variant of Martin-Löf's polymorphic, extensional type theory. Due to this
extensionality, type checking is undecidable.

The �exibility of Nuprl's polymorphism and the fact that it does not impose com-
putability of types enables the system to use a rich and open-ended type theory, which
has a predicative cumulative hierarchy of type universes, dependent function types, subset
types, quotient types, parameterized inductive types and record types. Following Curry
Howard's propositions-as-types principle, propositions are interpreted as types inhabited
by the computational content of their proofs. This content can then be extracted, thus
realizing the proofs-as-programs paradigm.

Based on this, computational re�ection (see Section 2.1) is achieved via an evalua-
tion operator which can perform computation on terms forming either the hypothesis or
conclusion of a sequent, replacing them with the result of their evaluation.

HOL

HOL [Gor88] denotes a family of interactive theorem provers for higher-order logic, vastly
in�uenced by LCF (see Section 2.2). To this e�ect, the systems are highly programmable

10

in ML and can be seen, in this sense, as programming languages in themselves. Also fol-
lowing the LCF-style methodology, HOL systems are implemented as libraries, in which,
starting from a trusted kernel of proved theorem, new results can be established through
syntactic manipulations, using functions from the library. These functions correspond to
inference rules in higher-order logic.

Re�ection is realized by implementing inference patterns using �proforma theorems�.
The intuition behind them is that, through proving general lemmas, one can encode
general transformation schemas, such that proof steps can be justi�ed via instantiation.
Essentially, the mechanism enables one to re�ect syntactic transformation into inference.
Taking this further, one could also consider general veri�cation procedures that, once
established, can be relied upon, without the need of producing additional proofs.

Coq

Coq [BC04] is an interactive proof management system, whose underlying formal language
is the Calculus of Inductive Constructions (CIC), the richest calculus in Barendregt's
lambda cube [Bar91], supporting polymorphism, type operators and dependent types.
Essentially, the type system can be seen as containing only function types and inductive
types (see Section 2.1). Unlike Nuprl, Coq's equality is intensional, meaning that type
checking is decidable. The system in implemented in Objective Caml, a dialect of SML,
and comes with an automatic extraction mechanism from Coq proof speci�cations that
can be used to build certi�ed and e�cient functional programs. Two types of re�ection
are supported.

The general, large-scale one, enables the translation of propositions from the speci�-
cation language (Gallina) into values of inductive types that represent syntax and that
can be analyzed within the speci�cation language itself, instead of within the Objective
Caml meta-language. Through small-scale re�ection, one can switch from de�nitional to
propositional equality, hence inducing non-trivial computation during the proof checking
of logical propositions.

Chiron

Chiron [Far07b,Far07a] is a general-purpose logic for mechanizing mathematics meant to
enable the integration of computer theorem proving and computer algebra systems. The
logic is based on a derivative of typed von-Neumann-Bernays-Gödel (NBG) set theory
(see Section 1) and supports a mechanisms for dealing with re�ection (see Section 2.1),
which permits reasoning about syntax, and with partiality, by allowing unde�ned terms.

Central to Chiron is the notion of biform theories, which are both axiomatic and
algorithmic theories that provide a uniform formalism for combining deduction and com-
putation. On the axiomatic side, it consists of a set of formulas and, on the algorithmic
side, it employs transformer rules and meaning formulas. While transformers essentially
relate the input and output expressions syntactically, via their quotation, meaning for-
mulas map between the values of these expressions, via their evaluation.

11

Logical Frameworks

Logical frameworks are a tool for specifying logical systems. They consist of a meta-
language and a description of both the class of logics to be represented and of the mech-
anisms used to this extent. The motivation behind developing such logical frameworks
can be identi�ed as two-fold.

At a theoretical level, logical frameworks provide a formal basis for describing log-
ical reasoning, which is an especially valuable insight, given the foundational crisis in
mathematics (see Section 1). At a practical level, they constitute a suitable environ-
ment for developing reliable and powerful formal veri�cation tools, since they allow for
logic-independent proof development.

Logical frameworks can be set-theoretical, based on Tarski's view of consequence
and model theoretic semantics, or type-theoretical, based on the Curry-Howard iso-
morphism and proof theoretic semantics. The former are exempli�ed by institutions
[GB92, GR01] and General Logics [Mes89], while the latter by Automath [dB70], Is-
abelle [Pau94] and LF [HHP93]. An overview is given in [HR09].

The latter example, LF, is a corner of the lambda-cube [Bar91] obtained by adding
dependent types to the typed λ-calculus. The resulting λΠ-calculus consists of simply
typed terms, types and kinded type families. Following the Curry-Howard isomorphism,
LF represents all object language judgements as types and proofs as terms. Recently, a
module system for the Twelf implementation of LF was developed [RS09]

Another logical framework is that given by the MMT language [Rab09], which provides
a foundation-independent scalable module system for the development of mathematical
theories, based on the notions of theories and theory morphisms. Given its high de-
gree of generality, the language supports not only the representation of mathematical and
logical structures, but also of their meta-theoretical foundations and of the interrelations
between them.

12

Chapter 3
Basic Type Theory

In building a type theory with re�ection, we follow a constructivist approach. Namely,
starting from an �empty� type theory, in the sense that it does not contain any type con-
structors, we iteratively add, as orthogonal features, the re�ection of its meta-judgements.

An exhaustive theory of re�ection in this setting would have six such re�ected meta-
judgements: three for signature-based re�ection (the well-formedness of re�ected signa-
tures and, respectively, that of terms and morphisms with respect to a signature) and
three for context-based re�ection (the well-formedness of re�ected contexts, that of terms
with respect to a context and that of substitutions). The scope of this thesis is limited
to elaborating the syntax and semantics of a type theory with signature-based re�ection
of terms.

This basic type theory that we consider in the initial phase is inspired by MMT, due to
its generality and foundational unconstrainedness. The language distinguishes between
two levels of expressivity: the object-level, inhabited by expressions, and the meta-level,
consisting of meta-objects (signatures and contexts) and meta-morphisms between them
(signature morphisms and �context morphisms� or substitutions). In Section 4, we will
extend this basic type theory with type constructors for re�ected terms.

3.1 Syntax

At the object-level, this basic type theory contains only simple expressions E, subsuming
constants c, variables x and a distinguished type universe type. At the meta-level,
it comprises of signatures Σ, contexts Γ, (signature) morphisms σ and, respectively,
(context) substitutions γ.

Signatures Σ are taken to be �xed constructs with an absolute semantics, thus forming
a closed world, whose inhabitants, typed constants, exist only by virtue of being declared.
Due to the fact that, in practice, the size of these signatures is relatively large, they are
provided with names S, for ease of multiple reference.

Contexts Γ are de�ned with respect to a signature and hence have a relative semantics,
forming an open world, inhabited by typed variables.

Fixing two signatures Σ and Σ′, (signature) morphisms, σ : Σ→ Σ′ that map between
them, consist of type-preserving assignments of Σ-constants c : A to Σ′-terms σ(c) : σ(A),
where σ is the homomorphic extension of σ to Σ−terms.

13

Similarly to morphisms, assuming a signature Σ, (context) substitutions, γ : Γ′ → Γ′′,
map variables x, from a Σ-context Γ′, to terms E, in Σ-context Γ′′.

Next, we de�ne the application of morphisms and substitutions to well-typed expres-
sions E, contexts Γ′ and substitutions γ.

De�nition 1. Morphism Application. Considering a well-formed (signature) mor-
phism Γ ` σ : Σ→ Σ′, the application of σ is given by the homomorphic extension σ(−):

σ(E) ::=


x if Γ ` E = x
t if Γ ` E = c and c 7→ t in σ
type if Γ ` E = type

In the case of expressions, morphism application is straightforward, since it preserves
variables and type, replacing only constants with terms assigned to them by the mor-
phism.

σ(Γ′) ::=

{
· if Γ ` Γ′ = ·
σ(Γ′′), x : σ(A) if Γ ` Γ′ = Γ′′, x : A

For non-trivial contexts, the function is applied recursively to the types of the vari-
ables, leaving the latter unchanged.

σ(γ) ::=

{
· if Γ ` γ = · → ·
σ(γ′), x/σ(t) if Γ ` γ = γ′, x/t : Γ′ → Γ

Morphism application to non-trivial substitutions is carried out analogously.

De�nition 2. Substitution Application. Considering a well-formed (context) substi-
tution Γ `Σ γ : Γ′ → Γ′′, where Γ′ = x1 : A1, ..., xn : An and γ = x1/t1, ..., xn/tn, the
application of γ is given by the homomorphic extension γ(−):

γ(E) ::=


ti if Γ ` E = xi
c if Γ ` E = c
type if Γ ` E = type

Substitution application to expressions preserves constants and type, replacing vari-
ables with the terms assigned to them by the substitution.

γ(Γ′) ::=

{
· if Γ ` Γ′ = ·
γ(Γ′′), x : γ(A) if Γ ` Γ′ = Γ′′, x : A

γ(γ′) ::=

{
· if Γ `Σ γ′ = · → ·
γ(γ′′), γ(t) if Γ `Σ γ′ = γ′′, t : Γ′′ → Γ′

We present an overview of the basic syntax in Table 3.1.

3.2 Proof Theory

To delimitate the meaningful syntactic constructs of our language, we give corresponding
well-formedness judgments for its primitives. These rules are de�ned inductively, as
follows.

14

Grammar Typing Judgment Equality Judgment

Signatures (Σ) Σ ::= · | Σ, c : E ` Σ Sig ` Σ = Σ′

Morphisms (σ) σ ::= · | σ, c/E Γ ` σ : Σ → Σ′ Γ ` σ = σ′ : Σ → Σ′

Contexts (Γ) Γ ::= · | Γ, x : E Γ `Σ Γ′ Ctx Γ `Σ Γ′ = Γ′′

Substitutions (γ) γ ::= · | γ, x/E Γ `Σ γ : Γ′ → Γ′′ Γ `Σ γ = γ′ : Γ′ → Γ′′

Expressions (E) E ::= c | x | type `Σ E : E′ `Σ E = E′

Table 3.1: Grammar, Typing and Equality Judgments for Basic Type Theory.

For signatures, the base case sigempty consists of the well-formed empty signature
` · Sig. According to sig, once we have a well-formed signature Σ, we can extend it
to a well-formed signature Σ, c : A, by adding the corresponding declaration for a fresh
constant c, whose type is well-formed with respect to Σ.

Next, given a well-formed signature Σ, the empty morphism, mapping from the empty
signature to Σ, is well-formed (morempty). A morphism σ : Σ′ → Σ can be iteratively
extended by adding the assignment c 7→ t of a constant c : A declared in Σ′ to a term t
in Σ. The resulting morphism σ, c 7→ t maps from the extended signature Σ′, c : A to Σ.
This extended morphism is well-formed (mor), if the initial morphism σ is well-formed
and if the term t is well-formed over Σ and has the type σ(A), obtained by translating
the type of c along σ.

In the trivial case (ctxempty), the empty context, `Σ · over a well-formed signature Σ,
is well-formed. A context Γ can be extended with a variable declaration x : A. According
to ctx, the enlarged context Γ, x : A is well-formed, if the initial context is well-formed
and if the type of the variable is well-formed over Σ, in context Γ.

The well-formedness rules for substitutions, subempty and sub, are analogous to those
for morphism. Lastly, constant and variable declarations over a signature Σ, in context
Γ, are well-formed, if Γ is well-formed over Σ.

Equality is de�ned component-wise and the corresponding rules are straightforward.
For morphisms, in the base case, the empty morphisms mapping to the same well-formed
signature Σ are trivially equal. In the step case, by extending equal morphisms σ1 = σ2

with assignments c 7→ t1 and, respectively, c 7→ t2, equality is preserved, if the terms are
equal, i.e t1 = t2. The case for substitution equality is analogous.

As stated in the rules cre�, vre� and tre�, equality of atomic expressions in re�exive.
Also, it is symmetric and transitive, thus forming an equivalence relation over the set of
all terms de�nable by the grammar.

A summary of the typing and equality rules for basic type theory is given in Table
3.2 and Table 3.3, respectively.

15

sigempty
` · Sig

` Σ Sig c not in Σ · `Σ A : type
sig

` Σ, c : A Sig

` Σ Sig
morempty

` · : · → Σ

` σ : Σ′ → Σ `Σ t : σ(A)
mor

` σ, c 7→ t : Σ′, c : A→ Σ

` Σ Sig
ctxempty

`Σ · Ctx
`Σ Γ Ctx Γ `Σ A : type

ctx
`Σ Γ, x : A Ctx

`Σ Γ Ctx
subempty

`Σ · : · → Γ

`Σ γ : Σ′ → Σ Γ′ `Σ A : type Γ `Σ t : γ(A)
sub

`Σ γ, t : Γ′, x : A → Γ

`Σ Γ Ctx c : E in Σ
con

Γ `Σ c : E

`Σ Γ Ctx x : E in Γ
var

Γ `Σ x : E

Table 3.2: Inference System for Basic Type Theory

` Σ Sig
emptymoreq

` · = · : · → Σ

` σ1 = σ2 : Σ′ → Σ `Σ t1 = t2 moreq
` σ1, c 7→ t1 = σ2, c 7→ t2 : Σ′, c : A→ Σ

`Σ Γ Ctx
emptysubeq

` · = · : · → Γ

`Σ γ1 = γ2 : Γ′ → Γ Γ `Σ t1 = t2
subeq

`Σ γ1, t1 = γ2, t2 : Γ′, x : A→ Γ

`Σ Γ Ctx
crefl

Γ `Σ c = c

`Σ Γ Ctx
vrefl

Γ `Σ x = x

`Σ Γ Ctx
trefl

Γ `Σ type = type

Γ `Σ E = E ′
sym

Γ `Σ E ′ = E

Γ `Σ E = E ′ Γ `Σ E ′ = E ′′
trans

Γ `Σ E = E ′′

Γ `Σ E1 = E ′1 Γ `Σ E2 = E ′2 Γ `Σ E1 = E2
congr

Γ `Σ E ′1 : E ′2

Table 3.3: Equality Rules for Basic Type Theory

16

3.3 Semantics

Starting from the type theory T, whose syntax is outlined in 2.1, we set to de�ne its
set-theoretic semantics, with respect to a model structure M and to a variable as-
signment function α, and to prove its soundness (see Section4.4).

De�nition 3. Model Structure. A model structure M = 〈Set, [[−]]〉 consists of a
universe (domain of individuals) Set, which is the class of sets, and of an interpretation
function [[−]] : T → Set, which is an assignment of semantic values to every syntactic
entity in T (see Table 3.4).

De�nition 4. Variable Assignment. Given a well-formed context Γ, a variable as-
signment function α : Γ → Set is de�ned extensionally as a set of tuples pairing the
arguments and the values of the function, as follows:

α =

{
∅ if Γ = ·
α0 ∪ {(x, u)},where α0 = assignment for Γ0 and u ∈ [[A]]M if Γ = Γ0, x : A

Signatures are interpreted as sets and, hence, given a particular signature Σ, the set
[[Σ]] of its models belongs to the category Class, whose objects are classes. Intuitively,
a model of a signature consists of a set of tuples, where each tuple contains a declared
constant together with an interpretation of its type. Looking at the production rules,
given a signature Σ and a model M ∈ [[Σ]], the interpretation of the extended signature
Σ, c : A is formed by adding the element (c, u) to the setM , where u is the interpretation
of A with respect to M . At the base case, the interpretation of the empty signature is
the class containing just the empty set.

The semantics of signature morphisms is given by functors that are contravariant with
respect to the interpretations of the domain and target signatures. A model of a signature
morphism is a function that takes a variable assignment as input and returns a set of
tuples, where each tuple contains a declared constant from the domain signature together
with an interpretation of the expression assigned to it by the morphism. Speci�cally, given
a morphism σ and a model α 7→ [[σ]] (α), the interpretation of the extended morphism
σ, c 7→ E is formed by extending the function model with (c, [[Γ′ ` E]]) to the function
α 7→ ([[σ]] (α) ∪ {(c, [[Γ′ ` E]])}).

The interpretation of contexts and substitutions is analogous to that of signatures
and, respectively, of signature morphisms. The only di�erence is that, since contexts and
substitutions are well-formed with respect to a given signature, their semantics is also
depends on a �xed signature model.

Indeed, let us consider a well-formed context Γ with respect to a signature Σ. The
interpretation of Γ, under a �xed Σ-model M , is a class speci�ed by a set of variable
assignment functions that contain ordered pairs of variables and members of their type's
semantics. Starting from a context Γ and a Γ-model α, the interpretation of the extended
context Γ, x : A is constructed by adding the pair (x, u) to the set α, where u is a
translation of the type A.

For substitutions, as in the case of morphisms, the interpretation function is a con-
travariant functor translating from the interpretation of the target signature to that of
the domain signature. The interpretation of the extended substitution γ, x/t is obtained,

17

as before, by adding to the set a tuple consisting of the added variable and the inter-
pretation of its corresponding term, with respect to the signature model and variable
assignment.

Semantically, for a �xed model and variable assignment, the well-typing of a term
in context translates to the inhabitation of its interpreted type. In particular, following
the production rules for expressions, we have that the interpretation of constants and
variables is obtained through direct application of the model and, respectively, of the
variable assignment. The type type is interpreted as Set.

Syntax Semantics

`Σ Sig [[Σ]] ∈ Class

`σ : Σ→ Σ′ [[σ]] : [[Σ′]]→ [[Σ]]

Σ ::= · |Σ, c : A [[·]] = {∅} | [[Σ, c : A]] = {M ∪ {(c, u)} |M ∈ [[Σ]] , u ∈ [[Γ `Σ A]]M}

σ ::= · |σ, c 7→ E [[·]] : ∅ 7→ ∅ | [[σ, c 7→ E]] : α 7→ ([[σ]] (α) ∪ {(c, [[Γ `Σ′ E]])})

For a �xed model M ∈ [[Σ]]:

`Σ Γ Ctx [[Γ]]M ∈ Set

`Σ γ : Γ→ Γ′ [[γ]]M : [[Γ′]]M → [[Γ]]M

Γ ::= · |Γ, x : A [[·]]M = {∅} | [[Γ, x : A]]M = {α ∪ {(x, u)} |α ∈ [[Γ]]M , u ∈ [[Γ `Σ A]]M}

γ ::= · | γ, x/t [[·]]M : ∅ 7→ ∅ | [[γ, x/t]]M : α 7→ ([[γ]]M (α) ∪ {(x, [[Γ′ `Σ t]]
M,α)})

For a �xed assignment α ∈ [[Γ]]M :

Γ `Σ t : A [[Γ `Σ t]]
M,α ∈ [[Γ `Σ A]]M,α

E ::= c |x | type [[Γ `Σ c]]M,α = M(c) | [[Γ `Σ x]]M,α = α(x) | [[Γ `Σ type]]M,α = Set

Table 3.4: Interpretation Function

A summary of the corresponding set-theoretic semantics is given in Table 4.4.

3.4 Soundness

Lemma 3.4.1. Soundness Lemma: Let us assume a well-formed signature Σ, a �xed
model M ∈ [[Σ]], a well-formed context Γ and a �xed variable assignment α ∈ [[Γ]]M .

It follows that, if Γ `Σ t = t′, then [[Γ ` t]]M,α = [[Γ ` t′]]M,α.

Proof. We proceed by trivial induction on the derivation Γ `Σ t = t′ and we only have
the trivial base cases to consider, as given in Table 3.2.

• case 1: t = c, t′ = c. Then, [[Γ ` t]]M,α = M(c) and [[Γ ` t′]]M,α = M(c), hence
[[Γ ` t]]M,α = [[Γ ` t′]]M,α.

18

• case 2: t = x, t′ = x. Then, [[Γ ` t]]M,α = α(x) and [[Γ ` t′]]M,α = α(x), hence
[[Γ ` t]]M,α = [[Γ ` t′]]M,α.

• case 3: t = type, t′ = type. Then, [[Γ ` t]]M,α = Set and [[Γ ` t′]]M,α = Set, hence
[[Γ ` t]]M,α = [[Γ ` t′]]M,α.

Lemma 3.4.2. Substitution Lemma: Let us assume a well-formed signature Σ, a �xed
model M ∈ [[Σ]], well-formed contexts Γ, Γ′, a Σ-substitution γ : Γ → Γ′ and a �xed
variable assignment α ∈ [[Γ]]M .

It follows that, if `Σ γ : Γ → Γ′ and Γ `Σ E : E ′, then [[Γ′ ` γ(E)]]M,α =

[[Γ ` E]]
M,
[
[γ]
]M

(α)
.

Proof. We proceed by induction on the derivation Γ `Σ E : E ′.

• case 1: E = c implies [[Γ ` E]]
M,
[
[γ]
]M

(α)
= [[Γ ` c]]

M,
[
[γ]
]M

(α)
= M(c) = [[Γ′ ` c]]M,α

= [[Γ′ ` γ(c)]]M,α = [[Γ′ ` γ(E)]]M,α

• case 2: E = x implies [[Γ ` E]]
M,
[
[γ]
]M

(α)
= [[Γ ` x]]

M,
[
[γ]
]M

(α)
= [[γ]]M (α)(x) =

[[Γ′ ` t]]M,α

• case 3: E = type implies [[Γ ` E]]
M,
[
[γ]
]M

(α)
= [[Γ ` type]]M,

[
[γ]
]M

(α)
= Set =

[[Γ′ ` type]]M,α = [[Γ′ ` γ(type)]]M,α = [[Γ′ ` γ(x)]]M,α

19

Chapter 4
Re�ecting Terms

In this chapter we present the type-theoretical foundations of a minimal theory supporting
term re�ection (Section 4.1 and Section 4.2), together with its corresponding semantics
(Section 4.3).

4.1 Syntax

In order to be able to talk about term re�ection, it is necessary to expand the syntax of
the basic language we start from (see Section 3.1) with the needed re�ection primitives,
as well as with auxiliary meta-entities.

At the object-level, additional expressions are obtained through the type formation of
a re�ected type ↑S A inhabited by all re�ected (quoted) terms of type A over S, through
the quotation dteS of term t over a named signature S, through the evaluation bqcS of a
re�ected term q over a named signature S and through the elimination qσ of a quoted
term q via a morphism σ (see Table 5.4).

At the meta-level, the extended grammar includes a theory graph G, consisting of
all theories de�nable in our language, and a stack of frames W , comprising of named
signatures (theories) S and their contexts Γ. Such a stack is used to keep track of the
theories that have been quoted.

The corresponding typing and equality judgements are also given in Table 5.4 and
will be discussed at length in Section 4.2.

Next, we illustrate the introduced re�ection constructs as part of a running example,
given by an encoding for the theory of natural numbers.

Example 1. Natural Numbers

Let us begin from the meta-level signature Nat, which de�nes the set of terms over
the natural numbers, by providing a generic type nat and the basic constructors zero

and succ.

1 Nat = nat : type .
zero : nat . succ : nat → nat .

20

Grammar Typing Judgment Equality Judgment

Theory graphs (G) G ::= · | G, sig S = {Σ} ` G TGph ` G = G′

Frame stacks (W) W ::= · | W, (S, Γ) `G W Stack `G W = W ′

Signatures (Σ) Σ ::= · | Σ, c : E | S `G Σ Sig `G Σ = Σ′

Morphisms (σ) σ ::= · | σ, c/E W `G σ : S W `G σ = σ′ : S

Contexts (Γ) Γ ::= · | Γ, x : E W `G Γ Ctx W `G Γ = Γ′

Substitutions (γ) γ ::= · | γ, x/E W `G γ : Γ W `G γ = γ′ : Γ

Expressions (E,A, t, q)
E ::= c | x |type |

W `G E : E ′ W `G E = E ′E→E |E E | [E] E |
Re�ected terms (q) ↑S A | dteS |bqcS |qσ |

Table 4.1: Grammar, Typing and Equality Judgments for a Type Theory with Term
Re�ection

This generic speci�cation of the naturals is, however, not enough to form an inductive
abstract datatype. Speci�cally, in order to obtain the inductive type of natural numbers
↑Nat nat, one has to take the re�ection of all the terms of type nat over the signature Nat.
The constructors zero and succ are re�ected into the terms dzeroeNat and dsucceNat of
a new signature N. These are abbreviated by N and, respectively, 0 and s.

N = {
3 N : type = ↑Nat nat .

0 : N = dzeroeNat .
s : N→ N = dsucceNat .

} .

Furthermore, we illustrate in our next example how our approach gives us not only
inductive types, but also what is generally referred to as inductive families. Indeed, let
us look at the corresponding encoding of the datatype for vectors.

Example 2. Encoding Vectors.
First, let us note that the type of a vector having a certain �xed length can be fully

speci�ed with respect to the type of its entries. In our case, we take the latter to be a
type which we denote as a and which is kinded by type, the base type.

Starting from the above encoding for the natural numbers, we have that a vector
type vec is constructed by taking the type ↑Nat nat of all re�ected naturals nat over the
theory Nat.

Consequently, the type constructor ∅, for the type of all vectors of length zero, is
formed by the re�ected type of zero over Nat. Lastly, the cons type constructor is given
by the function type formed from the dependent type of all vector types of length x and
from that corresponding to the type a of the vector's entries. It returns the type of all
vectors of length x+ 1, value computable by applying the re�ected succesor operation s

to the evaluation bxcNat of x with respect to the theory Nat and by re�ecting the outcome
back to Nat.

21

As a result, the same signature Vector gives multiple inductive types. Thus, we
obtain an elegant solution for a common problem with inductive types, namely that one
cannot take the �xpoint over an inductive family, since it is de�ned relative to an index.

Vector = {
a : type .
vec : ↑Nat nat → type .

4 ∅ : vec ↑Nat zero .
cons : Πx : ↑Nat nat . vec x→ a → vec dsbxcNateNat .
} .

De�nition 5. Frame Well-Ordering.

Let us consider a theory graph G and a stack of frames containing (bottom-to-top)
the frames W1, . . . ,Wn, with corresponding theories T1, . . . , Tn.

We de�ne a partial relation <G between two theories from G, as denoting the degree
of their expressivity. Particularly, the �larger� the theory, the more expressive it is, in the
sense that it can contain quoted elements from any of the �smaller� theories. In turn, a
theory cannot contain any quoted inhabitants of the �larger� theory, but only evaluations.

We say that the frames W1, . . . ,Wn are well-ordered with respect to <G, if the follow-
ing holds:

Wn <
G · · · <G W1 (4.1)

Since terms can contain arbitrarily many quotations and evaluations, it becomes nec-
essary to appropriately handle such nested operations, when dealing with morphism ap-
plication or when de�ning the semantics (see Section 4.3).

This is realized through two similar families of meta-theoretical functions, {σn}n∈N∗
and {(Mα)n}n∈N∗ , that operate structurally on a given term t, preserving the subterms of
t, if the number of quotations and evaluations is well-balanced. If, however, the top-level
subterm of t is governed by one extra evaluation that returns it to the object level, the
functions correspond to normal morphism application and, respectively, to choosing a
representative from the semantics of the top-level term.

In the following, we will discuss the auxiliary morphism application functions {σn}n∈N∗ .
The auxiliary evaluation functions {(Mα)n}n∈N∗ will be discussed in Section 4.3.

De�nition 6. Auxiliary Morphism Application.

Let us de�ne the auxiliary morphism application to re�ected terms σn(t), which maps
terms W, (S, ·) `G t : A to closed terms (S, ·) `G σn(t) : σn(A), for n ∈ N.

22

σn+1(c) = c

σ1(c) = σc

σn(x) = x

σn(type) = type

σn(↑S A) = ↑S σn+1(A)

σn(dteS) = dσn+1(t)eS
σn+1(btcS) = bσn(t)cS
σ1(btcS) = tσ

σn(tτ) = σn(t)σ
n(τ)

(4.2)

As we can see, the index n monitors the number of quoted theories on the stack of
frames. Explicitly, when the auxiliary morphism σn is applied to the quotation dteS of
a term, the index count is incremented by a unit and, conversely, when it is applied to
the evaluation btcS of a term, its index count is decremented by a unit. Note that, if the
index count is one, the auxiliary morphism σ1 coincides with the meta-morphism σ and
its application to an evaluated term returns the elimination tσ of that term.

For index values greater than one, auxiliary morphism application preserves constants
c, variables x, as well as the type base type. However, in the case of constants, if the
index count is one, σ1 and σ are the same, as seen previously. Hence, the application of
σ1 to a constant c coincides with the normal morphism application in Section 3. Finally,
looking at the elimination tτ of a term t by a morphism τ , the auxiliary morphism σn is
applied compositionally to both the term and the morphism, for all values of n.

4.2 Proof Theory

We proceed to brie�y discuss the well-formedness inference rules corresponding to the new
constructs introduced in Section 4.1. The typing rules for term re�ection are summarized
in Table 4.2, while an overview of the equality rules is given in Table 4.3.

Typing Rules. To start with, let us give an account of the typing rules, starting
from that for the type formation ↑typ of the re�ected type corresponding to quoted terms
with type A, under a named signature (theory) S . This ↑S A type is well-formed with
respect to a stack W , if the type A is itself well-formed of type type with respect to the
stack W onto which an additional frame has been pushed, containing the quoted theory
S and its corresponding (empty) context. Additionally, we have to check for the theory
W being �larger� than S, according to the <G relation. Intuitively, as seen in Section
4.1, we de�ned the relation <G as enforcing the fact that entities in any of the theories
belonging to W can quote from the �smaller� theory S, but not vice-versa.

Next, we have the introduction rule ↑I for the type ↑S A of re�ected terms over a
named signature S. The rule states that the quotation dteS of a term t over a named
signature S is well-formed with respect to a stack W (has re�ected type ↑S A), if the

23

Type
formation

W, (S, ·) `G A : type W >G S
↑typ

W `G ↑S A : type

Introduction
(re�ection)

W, (S, ·) `G t : A W >G S
↑I

W `G dteS : ↑S A

Evaluation

W `G q : ↑S A ↑ev
W, (S, ·) `G bqcS : A

Elimination
(induction)

W `G q : ↑S A W ` σ : S
↑E

W `G qσ : σ(A)

Table 4.2: Inference System for a Type Theory with Term Re�ection

term t itself is well-formed with respect to the extended stack W, (S, ·) and has (the well-
formed) type A. Moreover, the same well-ordering check as in the type formation case
has to be performed.

The evaluation rule ↑ev states that the evaluation of a quoted term q under a named
signature S is well-formed with respect to the extended stack W, (S, ·) and has type A,
if q is well-formed under W and has the re�ected type ↑S A over S. Note that, when
type checking evaluations, the top-level frame recording the quoted theory and its context
is popped from the stack. Thus, in the implementation, it is necessary to perform an
additional check against the frame stack being empty (see Section 6).

The �nal rule ↑E, namely that for morphism elimination is the most involved. In
particular, the elimination of a quoted term q through a morphism σ is well-formed with
respect to the stackW (and has type σ(A)), if two constraints are satis�ed. Firstly, q has
to be well-formed with respect to W and have the re�ected type ↑S A of quoted terms of
type A over S. Secondly, the morphism σ has to be well-formed with respect to W and
translate terms from the theory S.

Equality Rules. Looking at Table 4.3, we �rst remark on the fact that the =t
I

introduction and =t
E elimination rules for re�ected terms are straight-forwardly stating

that quotation and, respectively, the elimination via a morphism, preserve term equality.
According to the =t

C computation rule, the term dteσS, obtained by applying a mor-
phism σ to a re�ected term dteS, is equal to that obtained by applying the meta-level
morphism σ to the term t, with respect to the frame W , given that, in turn, σ is well-
formed with respect to W .

Next, the =t
sound soundness rule states that a well-formed term is preserved via quoting

and then evaluating the result over the same theory S, i.e that quotation and evaluation
are partially inverse operations.

Analogous to the soundness rule, the =t
compl completeness rule asserts that, by �rst

evaluating a re�ected term q under a theory S and then re�ecting it over the same
theory, the result q′ is equal to q under a frame stack W , if equality holds between q and

24

Re�ecting... ...terms

Introduction

W, (S, ·) `G0 t = t′

=t
I

W `G dteS = dt′eS

Elimination

W `G q = q′
=t
E

W `G qσ = q′σ

Computation

W `G σ : S
=t
C

W `G dteσS = σ(t)

Soundness

W, (S, ·) `G0 t = t′

=t
sound

W, (S, ·) `G0 bdteScS = t′

Completeness

W `G q = q′
=t
compl

W `G0 dbqcSeS = q′

Extensionality

W, (S, ·) `G0 bqcS = bq′cS
=t
ext

W `G q = q′

Table 4.3: Equality Inference Rules a Type Theory with Term Re�ection

q′. Together with the previous result, this introduces quotation and evaluation as inverse
to each other.

Finally, conforming to the =t
ext extensionality re�ection rule, equality between two

well-formed quoted terms q and q′, with respect to a frame W is preserved by evaluation
under a theory S with respect to the extended frame W, (S, ·).

Example 1. Natural Numbers (continued) One can now de�ne basic operations
for natural numbers, such as addition (add) and multiplication (product), by specifying
morphisms σ and σ′ from Nat to N. These morphisms make the case distinction on the
structure of the �rst argument of the operations, returning a function N → N, which is
then applied to their second argument.

The assignment nat 7→ N → N sets the type of mσ, according to the rule ↑E (see
Table 4.2). Consequently, σ(zero) must be of type σ(nat) = N→ N, and σ(succ) must
have type σ(nat → nat) = (N→ N)→ (N→ N).

The operations are de�ned inductively on their �rst argument, by performing repeated
successor applications, in the case of addition, and, correspondingly, repeated additions,
in the case of multiplication.

N = {

4 N : type = ↑Nat nat .
0 : N = dzeroeNat .
s : N→ N = dsucceNat .

add : N→ N→ N

25

9 = [m] [n] mσ n .
(where σ = { nat 7→ N→ N .

zero 7→ [n : N] n .
succ 7→ [f : N→ N] ([n : N] s(f(n))) .

})
14 product : N→ N→ N

= [m] [n] mσ
′
n .

(where σ′ = { nat 7→ N→ N .
zero 7→ [_] 0 .
succ 7→ [f : N→ N] ([n : N] (f(n) + n)) .

19 })

} .

Let us further illustrate the application of the above-de�ned inference rules, by pre-
senting a proof for the type preservation of the auxiliary morphism application introduced
in Section 4.1.

Example 3. Auxiliary Morphism Type Preservation.
In order to prove the type preservation property of morphism application (see De�nition
6), we �rst need to prove an auxiliary commutativity lemma, stated below and trivially
veri�able by induction.

Lemma 4.2.1. Commutativity.

W,S,R1, · · · , Rn, T `G A : type W,S,R1, · · · , Rn `G τ : T W `G σ : S

W,R1, · · · , Rn `G σn(τ(A)) = σn(τ)(σn+1(A)) (4.3)

According to the commutativity result, applying the auxiliary morphism σn to τ(A)
is the same as �rst applying σn to τ and then composing the result with the application
σn+1(A) of the auxiliary morphism with incremented index σn+1 to A.

Theorem 4.2.2. Type Preservation.

Given the function σn de�ned above, the following invariant is preserved:

W,S,R1, · · · , Rn `G t : A W `G σ : S

W,R1, · · · , Rn `G σn(t) : σn(A) (4.4)

Proof. The proof follows by structural induction on the term t.

• t ::= c

We know that:

W,S,R1, · · · , Rn `G c : A (4.5)

26

W `G σ : S (4.6)

Given that we have the following ordering of the theories in our frame stack:

Rn <
G · · · <G R1 <

G S <G W (4.7)

we know that theory Rn can be quoted in any of the �larger� theories Rn−1 to S, but
cannot quote symbols from any of them. Since A inhabits theory Rn, it can only use its
symbols and, also since it does not contain any evaluations, it is, therefore, left invariant
with respect to the application of function σn.

Substituting σn(A) and applying the corresponding de�nition for σn(c) in 4.5:

W,S,R1, · · · , Rn `G σn(c) : σn(A) (4.8)

Also, since no symbol from theory S is used, we can strengthen 4.9 to:

W,R1, · · · , Rn `G σn(c) : σn(A) (4.9)

Hence, we can conclude:

W,S,R1, · · · , Rn `G c : A W `G σ : S

W,R1, · · · , Rn `G σn(c) : σn(A) (4.10)

• t ::= x

Analogous to the previous case.

• t ::= type

Analogous to the previous case.

• t ::= ↑T A

We know:

W,S,R1, · · · , Rn `G ↑T A : type (4.11)

W `G σ : S (4.12)

Applying the ↑typ Type Formation Rule to 4.11:

W,S,R1, · · · , Rn, T `G A : type (4.13)

The Induction Hypothesis on 4.55 and 4.12 yields:

W,R1, · · · , Rn, T `G σn+1(A) : σn+1(type) (4.14)

which, by substituting the de�nition for σn+1(type), becomes:

W,R1, · · · , Rn, T `G σn+1(A) : type (4.15)

The ↑typ Type Formation Rule leads to:

27

W,R1, · · · , Rn `G ↑T σn+1(A) : type (4.16)

Applying the de�nition of ↑T σn+1(A) and that of σn(type) :

W,R1, · · · , Rn `G σn(↑T A) : σn(type) (4.17)

Hence:

W,S,R1, · · · , Rn `G ↑T A : type W `G σ : S

W,R1, · · · , Rn `G σn(↑T A) : σn(type) (4.18)

• t ::= dteT

We know:

W,S,R1, · · · , Rn `G dteT : ↑T A (4.19)

W `G σ : S (4.20)

Applying the ↑I Introduction Rule to 4.19:

W,S,R1, · · · , Rn, T `G t : A (4.21)

From 4.21 and 4.20, we obtain, via the Induction Hypothesis:

W,S,R1, · · · , Rn, T `G t : A W `G σ : S

W,R1, · · · , Rn, T `G σn+1(t) : σn+1(A) (4.22)

Using the ↑I Introduction Rule again on the last derivation:

W,R1, · · · , Rn, T `G σn+1(t) : σn+1(A)

W,R1, · · · , Rn `G dσn+1(t)eT : ↑T σn+1(A) (4.23)

Substitutions according to the corresponding de�nitions in 4.2 lead to:

W,R1, · · · , Rn `G dσn+1(t)eT : ↑T σn+1(A)

W,R1, · · · , Rn `G σn(dteT) : σn(↑T A) (4.24)

Hence, we proved:

W,S,R1, · · · , Rn `G dteT : ↑T A W `G σ : S

W,R1, · · · , Rn `G σn(dteT) : σn(↑T A) (4.25)

• t ::= btcT

28

We know:

W,S,R1, · · · , Rn, T `G btcT : A (4.26)

W `G σ : S (4.27)

Applying the ↑ev Evaluation Rule to 4.106:

W,S,R1, · · · , Rn `G t : ↑T A (4.28)

The Induction Hypothesis on 4.28 and 4.27 yields:

W,R1, · · · , Rn `G σn(t) : σn(↑T A) (4.29)

Substituting the de�nition for σn(↑T A):

W,R1, · · · , Rn `G σn(t) : ↑T σn+1(A) (4.30)

The ↑ev Evaluation Rule on 4.30 leads to:

W,R1, · · · , Rn, T `G bσn(t)cT : σn+1(A) (4.31)

Substituting the de�nition for bσn(t)cT :

W,R1, · · · , Rn, T `G σn+1(btcT) : σn+1 (4.32)

Hence:

W,S,R1, · · · , Rn, T `G btcT : A W `G σ : S

W,R1, · · · , Rn, T `G σn+1(btcT) : σn+1(A) (4.33)

• t ::= tτ

We know:

W,S,R1, · · · , Rn `G tτ : τ(A) (4.34)

W `G σ : S (4.35)

Applying the ↑E Elimination Rule to 4.34, we have:

W,S,R1, · · · , Rn `G t : ↑T A (4.36)

and

W,S,R1, · · · , Rn `G τ : T (4.37)

Using the Induction Hypothesis on 4.36 and 4.37:

W,R1, · · · , Rn `G σn(t) : σn(↑T A) (4.38)

W,R1, · · · , Rn `G σn(τ) : σn(T) (4.39)

29

Substituting the corresponding de�nition for σn(↑T A) in 4.38:

W,R1, · · · , Rn `G σn(t) : ↑T σn+1(A) (4.40)

Also, since T is a theory name, we can replace σn(T) with T in 4.39 and obtain:

W,R1, · · · , Rn `G σn(τ) : T (4.41)

From the ↑E Elimination Rule applied to 4.40 and 4.41:

W,R1, · · · , Rn `G σn(t) : ↑T σn+1(A) W,R1, · · · , Rn `G σn(τ) : T

W,R1, · · · , Rn `G σn(t)σ
n(τ) : σn(τ)(σn+1(A)) (4.42)

Substituting the de�nition for σn(t)σ
n(τ) and using the Commutativity Lemma

4.3.1:

W,R1, · · · , Rn `G σn(tτ) : σn(τ(A)) (4.43)

which is what had to be proven in this case.

30

4.3 Semantics

Having presented the necessary term re�ection primitives in Section 4.1 and their forma-
tion rules in Section 4.2, let us now discuss the respective meaning of these additional
constructs.

We proceed by building on the semantics de�ned for basic type theory, as speci�ed
in Section 3. Firstly, we introduce the preliminary notions of syntactic congruence (see
De�nition 7) and simpli�cation function (see De�nition 8). We then prove the well-
de�nedness property of the latter (see Theorem 4.3.2) and conclude the section with a
summary of the interpretation rules for term re�ection (see Table 4.4), together with
explanations.

To give a preparatory intuition, we remark on the fact that quoted terms are inter-
preted through classes, while their type is interpreted through quotients. These quotient
constructions are taken with respect to the equivalence relation given by (syntactic) equal-
ity (see Section 3.2). In the following, we specify the congruence relation this relation
forms on the set of all terms de�nable via the grammar.

De�nition 7. Syntactic Congruence.

Consider the set of all terms t that are well-formed with respect to a theory stack
frame W :

Terms = {t | W `G t : A} (4.44)

Let us de�ne syntactic congruence as the binary relation ∼= ⊆ Terms × Terms on
Terms, such that:

t1 ∼= t2 i� W `G t1 = t2 (4.45)

As is generally the case, this congruence ∼= has a corresponding quotient structure
Terms/∼= comprising of equivalence classes.

In addition to this syntactic congruence relation, due to similar reasons as those given
in Section 4.1 to introduce the auxiliary morphism construction, we require a simpli�-
cation function (Mα)n, as de�ned below. Particularly, this function helps us monitor
the balance between potential nested quotations and evaluations inside a term and to
adequately give this term meaning through a simpli�cation of its form.

De�nition 8. Simpli�cation Function.

Let us de�ne the following simpli�cation function, which maps termsW, (S, ·) `G t : A
to closed terms (S, ·) `G (Mα)n(t) : (Mα)n(A).

31

(Mα)n(W `G c) = c

(Mα)n(W `G x) = x

(Mα)n(W `G type) = type

(Mα)n(W `G ↑S A) = ↑S (Mα)n+1(W, (S, ·) `G A)

(Mα)n(W `G dteS) = d(Mα)n+1(W, (S, ·) `G t)eS
(Mα)n+1(W, (S, ·) `G btcS) = b(Mα)n(W `G t)cS

(Mα)1((S, ·) `G btcS) = r, where r ∈
[[

(S, ·) `G t
]]M,α

(Mα)n(W `G tτ) = (Mα)n(W `G t)
(Mα)n(W `G τ)

(4.46)

As before, the index n keeps track on the stack of frames. Explicitly, when the
simpli�cation function σn is applied to the quotation dteS of a term, the index count is
incremented by a unit and, conversely, when it is applied to the evaluation btcS of a term,
its index count is decremented by a unit. Note that, if the index count is one, applying
the simpli�cation function (Mα)1 to a term t coincides with taking a representative r
from the equivalence class corresponding to the semantics of this term (see Table 4.4
below).

For index values greater than one, the application of the simpli�cation function pre-
serves constants c, variables x, as well as the type base type. Also, looking at the
elimination tτ of a term t by a morphism τ , (Mα)n is applied compositionally to both
the term and the morphism, for all values of n.

Analogous to the type preservation property for auxiliary morphisms, it holds that the
well-de�nedness of (Mα)n can be stated as an invariant. Before formulating and proving
the respective Theorem 4.3, let us state below the needed auxiliary commutativity Lemma
4.3.1.

Lemma 4.3.1. Commutativity.

S,R1, · · · , Rn, T `G A : type S,R1, · · · , Rn `G τ : T

R1, · · · , Rn `G (Mα)n(τ(A)) = (Mα)n(τ)(↑T (Mα)n+1(A)) (4.47)

According to this commutativity result, simplifying the application τ(A) of a mor-
phism τ to a term A is the same as applying the simpli�cation (Mα)n(τ) to the simpli-
�cation (Mα)n(↑S A) of the type ↑S A) of all re�ected terms of type A. The result is
provable by induction on n.

We can now assert and verify the well-de�nedness of the simpli�cation function.

Theorem 4.3.2. Well-De�nedness of (Mα)n.

Given the function (Mα)n de�ned above, the following invariant is preserved:

32

S,R1, · · · , Rn `G t : A (Mα) ∈ [[S]]

R1, · · · , Rn `G (Mα)n(t) : (Mα)n(A) (4.48)

Remark:

In particular, for n = 0, we can think of (Mα0) as coinciding with the set-theoretical
interpretation function and of typing as coinciding with set membership.

S `G t : A (Mα) ∈ [[S]]

(Mα)0(t) ∈ (Mα)0(A) (4.49)

Proof. The proof proceed by structural induction on the term t.

• t ::= c

We know:

S,R1, · · · , Rn `G c : A (4.50)

(Mα) ∈ [[S]] (4.51)

The theories on the frame stack adhere to the following ordering:

Rn <
G · · · <G R1 <

G S (4.52)

Hence, by a similar argument as previously, A cannot use symbols from S and, con-
sequently, (Mα)(A) = A. Also, from the de�nition of (Mα)(c), it follows trivially that:

R1, · · · , Rn `G c : A (4.53)

• t ::= x

Analogous to the previous case.

• t ::= type

Analogous to the previous case.

• t ::= ↑T A

33

We know:

S,R1, · · · , Rn `G ↑T A : type (4.54)

Applying the ↑typ Type Formation Rule:

S,R1, · · · , Rn, T `G A : type (4.55)

The Induction Hypothesis and the fact that (Mα)n+1(type) = type yield:

R1, · · · , Rn, T `G (Mα)n+1(A) : type (4.56)

The ↑typ Type Formation Rule leads to:

R1, · · · , Rn `G ↑T (Mα)n+1(A) : type (4.57)

Applying the de�nition of ↑T (Mα)n+1(A) :

R1, · · · , Rn `G (Mα)n(↑T A) : type (4.58)

Hence:

S,R1, · · · , Rn `G ↑T A : type (Mα) ∈ [[S]]

R1, · · · , Rn `G (Mα)n(↑T A) : σn(type) (4.59)

• t ::= dteT

We know:

S,R1, · · · , Rn `G dteT : ↑T A (4.60)

Applying the ↑I Introduction Rule:

S,R1, · · · , Rn, T `G t : A (4.61)

From the Induction Hypothesis:

R1, · · · , Rn, T `G (Mα)n+1(t) : (Mα)n+1(A) (4.62)

Using the ↑I Introduction Rule again:

R1, · · · , Rn `G d(Mα)n+1(t)eT : ↑T (Mα)n+1(A) (4.63)

Substituting the corresponding de�nitions for d(Mα)n+1(t)eT and ↑T (Mα)n+1(A):

R1, · · · , Rn `G (Mα)n(dteT) : (Mα)n(↑T A) (4.64)

• t ::= btcT

34

We know:

S,R1, · · · , Rn, T `G btcT : A (4.65)

Applying the ↑ev Evaluation Rule:

S,R1, · · · , Rn `G t : ↑T A (4.66)

From the Induction Hypothesis:

R1, · · · , Rn `G (Mα)n(t) : (Mα)n(↑T A) (4.67)

Substituting the corresponding de�nition for (Mα)n(↑T A):

R1, · · · , Rn `G (Mα)n(t) : (Mα)n(↑T A) (4.68)

Applying the ↑ev Evaluation Rule again:

R1, · · · , Rn, T `G b(Mα)n(t)cT : (Mα)n(↑T A) (4.69)

Substituting the corresponding de�nition for b(Mα)n(t)cT and (Mα)n(↑T A):

R1, · · · , Rn, T `G (Mα)n+1(btcT) : ↑T (Mα)n+1(A) (4.70)

• t ::= tτ

We know:

S,R1, · · · , Rn `G tτ : τ(A) (4.71)

S,R1, · · · , Rn `G τ : T (4.72)

From the Induction Hypothesis on 4.71 and the de�nition for (Mα)n(↑T A):

R1, · · · , Rn `G (Mα)n(t) : ↑T (Mαn+1)(A) (4.73)

Similarly, for 4.72, using (Mα)n(T) = T , since T is just a theory name:

R1, · · · , Rn `G (Mα)n(τ) : T (4.74)

Applying the ↑E Elimination Rule to 4.73 and 4.74:

R1, · · · , Rn `G (Mα)(t)(Mα)(τ) : (Mα)n(τ)(↑T (Mα)n+1(A)) (4.75)

The de�nition for (Mα)(t)(Mα)(τ) and the Commutativity Lemma 4.47 yield:

R1, · · · , Rn `G (Mα)(tτ) : (Mα)n(τ(A)) (4.76)

35

We can now inspect the semantic rules for term re�ection primitives, as seen in Table
4.4. In formulating these rules, we make a case distinction depending on the number of
theories on the frame stack W with respect to which the constructs are de�ned. This
di�erentiation was foreshadowed by the way in which we speci�ed the simpli�cation
function (Mα)n (see De�nition 8). Unless otherwise speci�ed, in the following we concede
that the frame stack contains a single theory T together with its context Γ.

To start with, note that theory graphs G are intepreted as classes, containing signa-
ture models, while the interpretation of stacks W is given by sets of pairings, collecting
signature and context models.

The re�ection type ↑S A is interpreted as the Terms/ ∼= quotient construction of the
set Terms, collecting all well-formed terms of type A, with respect to the congruence
relation given by syntactic equality.

The semantics of a dteS quoted term t consists of the congruence class, whose repre-
sentative is (Mα)1(t). Intuitively, a re�ected term is, thus, interpreted as the set of all
terms that are syntactically equivalent with the �reduction� of t through (Mα)1.

Considering the evaluation bqcS of a term q, the interpretation function picks a rep-
resentative from the semantics of q. Note that this implies that the set-theory used to
specify the semantics of our re�ective type theory has to contain the axiom of choice.

Finally, for the elimination qσ of a re�ected term q via a morphism σ, we de�ne the
semantics as the model-application. Speci�cally, a model of σ is applied to the result
obtained by interpretating a representative r from the semantics of q.

Looking at these cases we see that, with the exception of the last one for term elim-
ination, all the other ones can be uni�ed into a single rule. In particular, we can state
that the interpretation of a term t with respect to an arbitrary frame stack of size n is
given by the equivalence class represented by (Mα)n.

36

Syntax Semantics

` G TGph [[` G]] ∈ Class

`G W Stack
[[
`G W

]]
∈ Set

`G Σ Sig
[[
`G Σ

]]
∈ Class

W `G σ : S
[[
W `G σ

]]
:
[[
`G W

]]
→
[[
`G S

]]
G ::= · | G,S = {Σ} [[` ·]] = ∅ | [[` G,S = {Σ} TGph]] = [[` G]] ∪ {(S,

[[
`G Σ

]]
)}

W ::= · | W, (S,Γ)
[[
`G ·

]]
= ∅ |

[[
`G W, (S,Γ) Stack

]]
= {(M,α) | M ∈

[[
`G Σ

]]
, α ∈

[[
`G Γ

]]M}
Σ ::= · | Σ, c : A

[[
`G ·

]]
= {∅} |

[[
`G Σ, c : A Sig

]]
= {M ∪ {(c, u)} | ,M ∈

[[
`G Σ

]]
, u ∈

[[
`G A

]]M}
σ ::= · | σ, c/E

[[
W `G ·

]]
: (∅, ∅ 7→ ∅) 7→ ∅ |

[[
W `G σ, c/E

]]
: (M,α) 7→

[[
W `G σ

]]
(M,α) ∪ {(c,

[[
W `G E

]]
)})

For a �xed W = (S, ·), where S = {Σ}, and for a �xed model M ∈
[[
`G Σ

]]
, s.t (M, ·) ∈

[[
`G W

]]
:

W `G Γ Ctx
[[
W `G Γ

]]M ∈ Set

W `G γ : Γ
[[
W `G γ

]]M
: {∅} →

[[
W `G Γ

]]M
Γ ::= · | Γ, x : A

[[
W `G ·

]]M
= {∅} |

[[
W `G Γ, x : A

]]M
= {α ∪ {(x, u)} |α ∈

[[
W `G Γ

]]M
, u ∈

[[
W `G A

]]M}
γ ::= · | γ, x/t

[[
W `G ·

]]M
: ∅ 7→ ∅ |

[[
W `G γ, x/t

]]M
: α 7→ (

[[
W `G γ

]]M
(α) ∪ {(x,

[[
W `G t

]]M,α
)})

For a �xed W = W0, (S,Γ), where S = {Σ} and Γ Ctx, and for a �xed assignment α ∈
[[
W `G Γ

]]M
, s.t (M,α) ∈

[[
`G W

]]
:

W `G t : A
[[
W `G t

]]M,α ∈
[[
W `G A

]]M,α

E ::= c | x | type
[[
W `G c

]]M,α
= M(c) |

[[
W `G x

]]M,α
= α(x) |

[[
W `G type

]]M,α
= Set

| ↑S A
[[

(T,Γ) `G ↑S A
]]M,α

= Terms/∼=

| dteS
[[

(T,Γ) `G dteS
]]M,α

= [(Mα)1(t)]
∼=

| bqcS
[[

(T,Γ) `G bqcS
]]M,α

= r, where r ∈
[[

(S, ·) `G q
]]M,α

| qσ
[[

(T,Γ) `G qσ
]]M,α

=
[[

(T,Γ) `G r
]][[(S, ·) `G σ

]]M,α
, where r ∈

[[
(S, ·) `G q

]]M,α[[
(T,Γ),W `G t

]]M,α
= [(Mα)n(t)]

∼=, where |W | = n

Table 4.4: Interpretation Function with Term Re�ection

37

4.4 Soundness

In this section, we prove the Soundness Theorem 4.4.3 for the semantics de�ned in Section
4.3. As auxiliary results, we establish the Substitution Lemma 4.4.1 and Semantic Well-
De�nedness 4.4.2.

Lemma 4.4.1 relates the value of obtained by applying a morphism model to the
interpretation of a term with that obtained by interpreting the morphism application to
the term.

Lemma 4.4.1. Substitution Lemma

Let us assume `G W , (M,α) ∈
[[
`G W

]]
and W >G S. Then, it holds that:

[[
(S, ·) `G t

]][[W `G σ : S
]]M,α

,∅
=
[[
W `G σ(t)

]]M,α
(4.77)

Proof. The proof follows by structural induction on the term t. We only prove the case
for term re�ection, the other ones being analogous.

• t ::= dteS

[[
W `G tσ

]]
=

[[
W `G σ(t)

]]
=

[[
W `G dt′eσS

]]
=

[[
W `G rσ

]]
,where r ∈

[[
W `G dt′e

]]
=

[[
W `G rσ

]]
,where r ∈ [t′]

∼=

=
[[
W `G t′σ

]]
=

[[
W `G σ(t′)

]]
, by applying the Induction Hypothesis

(4.78)

Next, Lemma 4.4.2 states that the well-formedness of a term t of type A with respect
to a frame stack W is the same as the membership of the interpretation t in the class
given by the interpretation of A, i.e inhabitation of the type's interpretation.

Lemma 4.4.2. Semantic Well-De�nedness.

Let us assume `G W and (M,α) ∈
[[
`G W

]]
. If:

W `G t : A (4.79)

Then: [[
W `G t

]]M,α ∈
[[
W `G A

]]M,α
(4.80)

38

Proof. The proof proceeds by case analysis on the term t.

• t ::= ↑S A

From the corresponding de�nitions:

[[
W `G t

]]M,α
::=

[[
W `G ↑S A

]]M,α
= {t | (S, ·) `G t : A}/∼=[[

W `G A
]]M,α

::=
[[
W `G type

]]M,α
= Set (4.81)

Since {t | (S, ·) `G t : A}/∼= ∈ Set, it follows that:[[
W `G t

]]M,α ∈
[[
W `G A

]]M,α

• t ::= dteS

We know, from the ↑I Introduction Rule:

W, (S, ·) `G t : A (4.82)

W >G S (4.83)

Applying the Well-De�nedness Theorem for (Mα)n (see Theorem 4.3) to 4.82:

(S, ·) `G (Mα)1(t) : (Mα)1(A)

Looking at the theory ordering in 4.83, we see that theory S cannot quote anything
fromW . Since A only uses symbols from S and, since it does not contain any evaluations,
it remains invariant with respect to applying (Mα)n: (Mα)1(A).

Hence, (S, ·) `G (Mα)1(t) : A and (Mα)1(t) ∈ {t | (S, ·) `G t : A}. Trivially:

[(Mα)1(t)]
∼= ∈ {t | (S, ·) `G t : A}/∼=

We can conclude: [[
W `G t

]]M,α ∈
[[
W `G A

]]M,α

• t ::= btcS[[
(T,Γ) `G t

]]M,α
::=

[[
(T,Γ) `G btcS

]]M,α
= r, where r ∈

[[
(S, ·) `G t

]]
• t ::= tτ

[[
W `G t

]]M,α
::=

[[
W `G tτ

]]M,α

=
[[
W `G r

]][[(S, ·) `G σ : S
]]M,α

,∅
, r ∈

[[
(S, ·) `G q

]]M,α[[
W `G A

]]M,α
::=

[[
W `G σ(A)

]]M,α

39

Having veri�ed the needed complementary results, we can prove our main result,
i.e soundness. Accordingly, the syntactic equality of two terms t1 and t2 implies the
�semantic� equality of their corresponding interpretations W `G t1 and W `G t2.

Theorem 4.4.3. Soundness Lemma

Let us assume `G W and (M,α) ∈
[[
`G W

]]
. Then, if:

W `G t1 = t2 (4.84)

It holds that we have: [[
W `G t1

]]M,α
=
[[
W `G t2

]]M,α
(4.85)

Proof. Let us proceed by case distinction on the length of the frame stack W .

• W = W0, (T,Γ), where |W0| > 0

According to the de�nition of the semantics:

[[
W `G t1

]]M,α
= [t1]

∼=[[
W `G t2

]]M,α
= [t2]

∼=

(4.86)

Since W `G t1 = t2, then t1 ∼= t2. Consequently, [t1]
∼= = [t2]

∼= and, from 4.86, we have
that:

[[
W `G t1

]]M,α
=
[[
W `G t2

]]M,α
. Hence, soundness holds, in the case of having a

non-trivial frame stack.

• W = (T,Γ)

We proceed by nested structural inductions on the theory graph G and on the deriva-
tion of W `G t1 = t2.

Graph Base Case: G = ·

[[
W `G t1

]]M,α
= ∅ (4.87)[[

W `G t2
]]M,α

= ∅ (4.88)

Trivially,
[[
W `G t1

]]M,α
=
[[
W `G t2

]]M,α
.

Graph Induction Hypothesis: For a well-formed theory graph G0, soundness
holds.

Graph Step Case: G = G0, T = {Φ}

40

• U 6= T . Then, T = S,G1 and G = G0, S,G1. This can be reduced to the previous
case, since the semantics induced by theory graph G1 is independent of that for
G0, S.

• U = T . Then, G = G0, S.

As a result, we continue by structural induction on the terms t1 and t2, with respect
to the theory graph G = G0, S.

In the following, let us denote W = W0, (S, ·).

• Congruence for Introduction, i.e t1 ::= dteS and t2 ::= dt′eS

Applying the =t
I equality rule to:

W `G dteS = dt′eS (4.89)

we have that:

W, (S, ·) `G0 t = t′ (4.90)

Hence
(S, ·) `G0 (Mα)1(t) = (Mα)1(t′) (4.91)

and

(Mα)1(t) ∼= (Mα)1(t′) (4.92)

which leads to:
[(Mα)1(t)]

∼= = [(Mα)1(t′)]
∼= (4.93)

The Graph Induction Hypothesis together with equality 4.90 leads to:

[[
W, (S, ·) `G0 t

]]M,α
=
[[
W, (S, ·) `G0 t′

]]M,α
(4.94)

The corresponding semantics for terms t1 and t2 yields:

[[
W `G t1

]]M,α
=
[[
W `G dteS

]]M,α Def
= [(Mα)1(t)]

∼= (4.95)[[
W `G t2

]]M,α
=
[[
W `G dt′eS

]]M,α Def
= [(Mα)1(t′)]

∼= (4.96)

From equalities 4.95 and 4.96, as well as 4.93, we can conclude that 4.85 holds.

41

• Congruence for Elimination, i.e t1 ::= qσ and t2 ::= q′σ

Applying the =t
elim (see Table ??) to:

W `G qσ = q′σ (4.97)

we have that:
W `G q = q′ (4.98)

According to the Term Induction Hypothesis, we get:[[
W `G q

]]M,α
=
[[
W `G q′

]]M,α
(4.99)

Also, from the corresponding interpretation function rule (see Table 4.4):[[
W `G t1

]]M,α
=

[[
W `G qσ

]]M,α

=
[[
W `G r

]][[W `G σ : S
]]M,α

, ∅
, where r ∈

[[
W `G q

]]M,α

(4.100)[[
W `G t2

]]M,α
=

[[
W `G q′σ

]]M,α

=
[[
W `G r′

]][[W `G σ : S
]]M,α

, ∅
, where r′ ∈

[[
W `G q′

]]M,α

=
[[
W `G r′

]][[W `G σ : S
]]M,α

, ∅
, where r′ ∈

[[
W `G q

]]M,α
(4.99)

=
[[
W `G r

]][[W `G σ : S
]]M,α

, ∅
, by picking r′ = r

(4.101)

Given 4.101, we can conclude that equality 4.85 holds.

• Computation, i.e t1 ::= dteσS and t2 ::= σ(t′)

Applying the =t
comp equality rule to W `G dteσS = σ(t′), we obtain:

W `G t = t′ (4.102)

Hence:
W `G (Mα)1(t) = (Mα)1(t′) (4.103)

Also, given the Term Induction Hypothesis, we get:

[[
W `G t

]]M,α
=
[[
W `G t′

]]M,α
(4.104)

42

[[
W `G t1

]]M,α
=

[[
W `G dteσS

]]M,α

=
[[

(S, ·) `G r
]]M,α

[[
W `G σ : S

]]M,α
,∅
, for some r ∈

[[
W `G dteS

]]M,α

=
[[

(S, ·) `G r
]]M,α

[[
W `G σ : S

]]M,α
,∅
, for some r ∈ [(Mα)1(t)]

∼=

=
[[

(S, ·) `G (Mα)1(t)
]]M,α

[[
W `G σ : S

]]M,α
,∅
, by chosing r = (Mα)1(t)

=
[[

(S, ·) `G σ((Mα)1(t))
]]M,α

, by applying the Substitution Lemma

(4.105)[[
W `G t2

]]M,α
=

[[
W `G σ(t′)

]]M,α

=
[[
W `G σ((Mα)1(t′))

]]M,α

=
[[
W `G σ((Mα)1(t))

]]M,α
, from 4.103

(4.106)

Applying the Substitution Lemma to 4.106, it follows that 4.85 holds.

• Soundness, i.e t1 ::= bdteScS and t2 ::= t′

[[
W `G t1

]]M,α
=

[[
W `G bdteScS

]]M,α

Def
=

[[
W `G dteS

]]M,α

= [(Mα)1(t)]
∼=

(4.107)[[
W `G t2

]]M,α
=

[[
W `G t

]]M,α

(4.108)

• Completeness, i.e t1 ::= dbqcSeS and t2 ::= q′

Applying the =t
compl equality rule to:

W `G dbqcSeS = q′ (4.109)

we get:
W `G q = q′ (4.110)

Hence, according to the Term Induction Hypothesis:[[
W `G q

]]M,α
=
[[
W `G q′

]]M,α
(4.111)

43

[[
W `G t1

]]M,α
=

[[
W `G dbqcSeS

]]M,α

Def
= [(Mα)1(bqcS)]

∼=

Def
= [r]

∼=, where r ∈
[[
W `G q

]]M,α

=
[[
W `G q

]]M,α

=
[[
W `G q′

]]M,α
, from equality 4.111

=
[[
W `G t2

]]M,α

(4.112)

• Extensionality, i.e t1 ::= q and t2 ::= q′

Applying the =t
ext equality rule (see Table ??) to

W `G q = q′ (4.113)

we get:
W, (S, ·) `G0 bqcS = bq′cS (4.114)

Using the Graph Induction Hypothesis together with 4.114, it follows that:

[[
W, (S, ·) `G0 bqcS

]]M,α
=
[[
W, (S, ·) `G0 bq′cS

]]M,α
(4.115)

We know that:

[[
W, (S, ·) `G0 bqcS

]]M,α
=

[[
W `G q

]]M,α[[
W, (S, ·) `G0 bq′cS

]]M,α
=

[[
W `G q′

]]M,α

(4.116)

From 4.114 and 4.116, it can be derived that
[[
W `G q

]]
=
[[
W `G q′

]]
.

Hence,
[[
W `G t1

]]M,α
=
[[
W `G t2

]]M,α
, QED.

44

Chapter 5
Towards a General Theory of Re�ection

5.1 Re�ecting Morphisms

In keeping with the type theoretical extension for term re�ection, let us now consider the
case for morphism re�ection. As previously, we begin by identifying the needed primitives
of our extended language.

At the object-level, additional expressions are obtained through the type formation
of a re�ected type ↓ S inhabited by all re�ected re�ected morphisms mapping out of a
named signature S, through the quotation dσeS of morphism σ with domain S, by the
evaluation bmcS of a re�ected morphism m from S and through the elimination tm of a
term t via a quoted morphism m (see Table 5.1).

Grammar Typing Judgment Equality Judgment

Theory graphs (G) G ::= · | G, sig S = {Σ} ` G TGph ` G = G′

Frame stacks (W) W ::= · | W, (S, Γ) `G W Stack `G W = W ′

Signatures (Σ) Σ ::= · | Σ, c : E | S `G Σ Sig `G Σ = Σ′

Morphisms (σ) σ ::= · | σ, c/E W `G σ : S W `G σ = σ′ : S

Contexts (Γ) Γ ::= · | Γ, x : E W `G Γ Ctx W `G Γ = Γ′

Substitutions (γ) γ ::= · | γ, x/E W `G γ : Γ W `G γ = γ′ : Γ

Expressions (E,A, t, σ,m)
E ::= c | x |type |

W `G E : E ′ W `G E = E ′E→E |E E | [E] E |
Re�ected morphisms (m) ↓ S |dσeS |bmcS |tm |

Table 5.1: Grammar, Typing and Equality Judgments for a Type Theory with Morphism
Re�ection

We proceed to brie�y discuss the well-formedness inference rules corresponding to the
new constructs introduced above. The typing rules for morphism re�ection are summa-
rized in Table 5.2, while an overview of the equality rules is given in Table 5.3.

First, let us give an account of the typing rules, starting from the ↓typ rule for the
type formation of the re�ected type corresponding to quoted morphisms mapping from a

45

theory S. This ↓ S type is well-formed with respect to a stack W and of base type type,
if the theory S belongs to the theory graph G.

Next, we have the introduction rule ↓I for the type ↓ S of re�ected morphisms mapping
from S. The rule states that the quotation dσeS of a morphism σ over a named signature
S is well-formed with respect to a stack W (and of re�ected type ↓ S), if the morphism
σ itself is well-formed with respect to the extended stack W, (S, ·) and maps from S.

Conversely, the evaluation rule ↓ev states that the evaluation of a quoted morphism
m under a named signature S is well-formed with respect to the extended stack W, (S, ·)
and has domain S, if m is well-formed under W and has the re�ected type ↓ S. Note
that, when type checking evaluations, the top-level frame recording the quoted theory
and its context is popped from the stack. Thus, in the implementation, it is necessary to
perform an additional check against the frame stack being empty (see Section 6).

Finally, in the ↓E rule, we have that the term tm obtained by eliminating a term t by
a morphism m is well-formed with respect to a frame stackW , if the morphism m is well-
formed and of re�ection type and if the term t is well-formed of type A in signature A.
The corresponding type for the elimination term is given by the applying the evaluation
of m to type A.

Type
formation

S ∈ dom(G)
↓typ

W `G ↓ S : type

Introduction
(re�ection)

W, (S, ·) `G σ : S
↓I

W `G dσeS : ↓ S

Evaluation

W `G m : ↓ S
↓ev

W, (S, ·) `G bmcS : S

Elimination
(induction)

W `G m : ↓ S `S t : A
↓E

W `G tm : bmcS(A)

Table 5.2: Inference System for Basic Type Theory with Morphism Re�ection

From Table 5.2, we can notice the =m
I introduction and =m

E elimination rules for
re�ected morphisms express the preservation of morphism equality under the application
of quotation and, respectively, elimination via a morphism.

The =m
C computation rule states that the term tdσeS , obtained by eliminating a term

t with the quotation dσeS of a morphism σ, is equal to that obtained by applying the
meta-level morphism σ to the term t, with respect to the frame W , given that, in turn,
σ is well-formed with respect to W .

Next, the =t
sound rule states that a morphism is preserved via quoting and then evalu-

ating the result over the same theory S, if the morphism is well-formed and maps from S.
In other words, according to this soundness rule, quotation and evaluation are partially
inverse operations.

46

Analogous to the soundness rule, the =t
compl completeness rule asserts that, by �rst

evaluating a re�ected morphism m under a theory S and then re�ecting it over the same
theory, the morphism is preserved. Together with the previous result, this introduces
quotation and evaluation as inverse to each other.

Finally, conforming to the =t
ext extensionality re�ection rule, equality between two

well-formed quoted morphisms m and m′, with respect to a frame W is preserved by
evaluation under a theory S with respect to the extended frame W, (S, ·).

Re�ecting... ...morphisms

Introduction

W, (S, ·) `G0 σ = σ′ : S
=m
I

W `G dσeS = dσ′eS

Elimination

W `G t = t′
=m
E

W `G tm = t′m

Computation

W `G σ : S
=m
C

W `G tdσeS = σ(t)

Soundness

W, (S, ·) `G0 σ : S
=m
sound

W, (S, ·) `G0 bdσeScS = σ

Completeness

W `G m : S =m
compl

W `G dbmcSeS = m

Extensionality

W, (S, ·) `G0 bmcS = bm′cS : S
=m
ext

W `G m = m′

Table 5.3: Equality Inference Rules with Morphism Re�ection

Example 4. Ring of Polynomials.
The formalization of the type of polynomial rings polyType provides us with a very

interesting example, in that it combines the use of both inductive types (re�ected terms
over a closed signature) and dependent record types (re�ected morphisms out of the
type of rings). Moreover, it displays an instance where one actually re�ects not over a
signature, but over the result of applying an operation on it, namely evaluation.

We encode the type of rings using the named signature Ring, which contains the
generic universe ring_univ for rings, the neutral elements 0 and 1, binary operations
corresponding to addition (+), multiplication (*) and the unary inverse operation (-).

Ring = {
3

ring_univ : type .
0 : ring_univ .
1 : ring_univ .
+ : ring_univ → ring_univ → ring_univ .

8 * : ring_univ → ring_univ → ring_univ .
- : ring_univ → ring_univ .

47

} .

One method of encoding polynomials relies on their Horn normal form, as given in
the signature Σ. Consequently, starting from a` universe type of polynomials poly_univ,
we code them inductively using the constructors Pc, for constant polynomials, and Px,
for univariate polynomials. The former transforms constants from the ring universe
r.ring_univ into constant polynomials in poly_univ. The latter takes a polynomial
P in poly_univ, a constant c from the ring universe r.ring_univ and outputs a uni-
variate polynomial P ∗ X + c in poly_univ. Next, in order to obtain the signature for
polynomial rings, we re�ect Σ and parameterize it over ring models r, which are re�ected
morphisms of type ↓ Ring. The corresponding type of polySig is that of a model functor
going from the type ↓ Ring of models of Ring to an extension~. of the empty signature.

polySig : ↓ Ring → ~. = [r : ↓ Ring] d Σ e
3 (where Σ = poly_univ : type . % poly un ive r s e

Pc : r . ring_univ → poly_univ . % constant poly
Px : poly_univ → r . ring_univ → poly_univ . % un i va r i a t e

poly
) .

8 polyType = [r : ↓ Ring] ↑bpolySig rc poly_univ .

The type of polynomial rings polyType 1 is intuitively the type of the re�ected terms
of type poly_univ over the evaluation bpolySig rc of the signature polySig. In order
to allow instantiations and, hence, a higher level of generality, this type is explicitly
made dependent on a re�ected morphism of type ↓ Ring, the type corresponding to the
re�ected morphisms out of Ring. Due to this parameterization , one can substitute the
underlying ring with any particular model of Ring. A potential drawback of this design
choice is that it makes type reconstruction harder.

Another method for specifying the type of polynomials is to consider the actual terms
and not their normalization. To this extent, we build a signature Σ′, by including the
declarations from the signature Ring, a constructor for constant polynomials Pc as before,
and by making the variables X primitive constants in poly_univ. This matches to the
way in which mathematicians would think of variables in this setting. Indeed, since these
variables are globally declared and not bound, they behave similarly to constants. Notice
that, in this case, the signature Σ′ is an extension of that of Ring.

1

polySig : ↓ Ring → −−→
Ring = [r : ↓ Ring] d Σ′ e

(where Σ′ = b Ring c
Pc : r . ring_univ → poly_univ . % constant poly
X : poly_univ . % constant var

6) .

polyType = [r : ↓ Ring] ↑bpolySig rc poly_univ .

1This is not really the case, as one has to actually take the quotient type over the congruences
generated.

48

The type of polyType is the same as above, the intuition now being that one takes the
set of polynomials extending that of rings, adds a special construct for variables and then
re�ects the terms of type polynomial poly_univ over the the evaluation bpolySig rc of
polySig.

At this point we emphasize that one has to comet to either treating variables as
constants, as has been done in the previous example, or as proper variables, which we
argue is a more elegant solution, since it facilitates α-renaming. According to the latter
viewpoint, we get a signature Σ for polynomials that no longer has variables as primitives.
Also, in the encoding of the type of polynomial rings, instead of re�ecting polynomial
terms of type poly_univ, we re�ect polynomial terms with free variables of type Πx :
poly_univ.poly_univ.

1

polySig : ↓ Ring → −−→
Ring = [r : ↓ Ring] d Σ′′ e

(where Σ′′ = b Ring c
Pc : r . ring_univ → poly_univ .) .

6 polyType = λr : ↓ Ring . ↑bpolySig rc ({x : poly_univ} poly_univ) .

Example 5. Model Theory.
As mentioned in the introductory part, models and model functors appear often

as part of routine mathematical practice. The key observation is that, taking a signature
S, which can represent, for instance, a mathematical or logical theory, models of S can
be seen as formed from re�ected morphisms out of the signature and as related via model
functors.

In the following, we exemplify these two concepts based on the algebraic formalizations
of monoids, groups, rings and polynomials.

Models. We begin by examining the monoid speci�cation Monoid, containing a set
i, the generic (universe) type, which closed under a binary operation (composition) ◦
with identity (neutral element) e.

Monoid = {
3

i : type .
e : i .
◦ : i → i → i .

8 } .

Next, we illustrate the formalization of a monoidal model, formed as a free object,
essentially a �generic� algebraic structure, generated by the one-element set X. The free
monoid model Monoid(X), parameterized by X, is encoded via a re�ected morphism σ
mapping out of Monoid. This morphism assigns to the universe type i, the type ↑Monoid
({x : i} i) of re�ected terms with a free variable, type which we will abbreviate with u.
The neutral element in the free construction is obtained by re�ecting the neutral element
built using the variable x. The composition in Monoid(X) takes two elements of the free
monoid and outputs the re�ected term obtained by evaluating the elements terms back
to Monoid(X), constructing corresponding ones through the variable x and using ◦ to
combine them.

49

2 Monoid(X) : ↓ Monoid
= d σ : Monoid e .

(where σ = { i 7→ u = ↑Monoid ({x : i} i) .
e 7→ d [x : i] e eMonoid .
◦ 7→ [a : u] [b : u] d [x : i] (bacMonoid x) ◦ (bbcMonoid x)) eMonoid

7 } .)

One can draw an analogy with the previous example and view Monoid(X) as the type
of polynomials over a monoid.

Model Functors. In addition to being able to form models out of signatures as we
have seen above, one can also formalize the various connections between them through
model functors. Moreover, in this context, it is interesting to explore how one can handle
the meta-theories or foundations of our models and their relations.

Note that one can base an encoding S on a given foundation F, by including the latter in
S, essentially considering the signature an extension of F, whose type is ~F (see Section5.2).
As shown in Figure 5.1, the signature morphism σ : S → F, whose re�ection dσe :↓ S

forms a model of S, is basically a retraction (left inverse) of the inclusion morphism from
the foundation into the signature.

F

S

σ

Figure 5.1: Relating Signatures and their Foundation

As mentioned in the introduction (see Section 1), ZFC is the standard set-theoretical
foundation for formalized mathematics. We model the theory as a signature that contains
the declarations for sets, propositions and truth judgements, as well as corresponding ones
for union, intersection, pairs, products, implication, with predicates for set membership
and pairings. Typing of sets can be realized by applying the Elem operator and elements of
a given set are represented as pairs containing the element and a proof of its membership
in the set. These can be extracted using the projections which and why. Consequently,
the type of elements of a set is a dependent sum type. We also give ourselves application
and lambda operators.

1

ZFC = {

set : type .
prop : type .

6 ded : prop → type .
∈ : set → set → prop .⋃

: set → set → set = . . .⋂
: set → set → set = . . .

pair : set → set → set = . . .
11 Π1 : set → set = . . .

50

Π2 : set → set = . . .
isPair : set → set → set → prop = . . .
prod : set → set → set = . . .
⇒ : set → set → set = . . .

16

Elem : set → type .
elem : {x : set} ded x ∈ A → Elem A.
which : Elem A → set .
why : {x : Elem A} ded x (which x) ∈ A.

21 @ : Elem (A ⇒ B) → Elem A → Elem B = . . .
λ : (Elem A → Elem B) → Elem (A ⇒ B) = . . .

}

Having ZFC as a foundation, we can encode monoids and groups in a straightforward
manner.

1

Monoid = {
ZFC.
e : Elem univ .
◦ : Elem univ → Elem univ → Elem univ .

6 } .

Group = {
ZFC.
e : Elem univ .

11 inv : Elem univ → Elem univ .
◦ : Elem univ → Elem univ → Elem univ .
} .

A model functor between models of Monoid and Group is given by unitgroup, as
shown in Figure 5.2.

Starting from a model m of Monoid, one can de�ne the functor as a re�ected morphism
σ out of Group. The morphism maps the type of group elements to that of the elements
of a set containing all invertible monoid elements u. For ease of readability, we abbreviate
that set with q. Next, the neutral element e is mapped to the type obtained through the
application of the operator elem to the corresponding monoid neutral element m.e and
to a proof proof_e that m.e belongs to q. We will omit the details of such proof. The
type value for circ arises by taking two objects in Monoid, projecting the corresponding
elements to get to the term (which x) m.◦ (which y) and applying elem to it and to the
proof that it is part of q (closure under composition). Given an element in Monoid, we
obtain the type value for the inverse in Group, by applying elem to the monoid element
satisfying the inverse property and to a proof it belongs to q.

unitgroup : ↓ Monoid → ↓ Group
2 = [m : ↓ Monoid] d σ : Group e

(where σ =
{ i 7→ Elem q .

e 7→ elem m . e pf_e .
◦ 7→ [x : Elem q] [y : Elem q] elem ((which x) m . ◦ (which y)) pf_comp

.
7 inv 7→ [x : Elem q]

51

elem (the (x' : m . i) (x' m . ◦ x = m . e) ∧ (x m . ◦ x' = m . e)) pf_inv

.
} .

and q = {u : m . i | ∃ v : m . i . (u m . ◦ v) = m . e})

ZFC

Monoid Group

m : ↓ Monoid dσe : ↓ Groupunitgroup

Figure 5.2: Monoid to Group Model Functor

As we have shown above, models can essentially be seen as theory (signature) mor-
phisms. However, we remark that, while every signature morphism can induce a �model
morphism� by compositionality, the inverse does not apply. Indeed, considering a signa-
ture morphism M : Monoid → Group and a model σG of Group in ZFC, one can obtain
the model σM of Monoid in ZFC, by composing M and σG (see Figure 5.3a). Nonetheless,
just by taking two ZFC-models σG and σM of Group and Monoid, one cannot determine
if there is, in fact, a signature morphism between them. Thus, the need arises to further
investigate the abstract adequacy properties between the syntax and semantics of our
types (see Figure 5.3b).

Monoid Group

ZFC

F

σM = F ;σG σG

(a) Theory Morphism

Group Monoid

ZFC

σG σM

(b) Model Morphisms

Figure 5.3: Theory and Model Morphisms

5.2 Re�ection Perspectives

In building a type theory with re�ection, we follow a constructivist approach. Namely,
starting from a basic (�empty�) type theory (see Section 3), in the sense that it contains
a bare minimum of type constructors, we seek to iteratively add, as orthogonal features,
the re�ection of its meta-judgements.

An exhaustive theory of re�ection in this setting would support six such re�ected
meta-judgements: three for signature-based re�ection (the well-formedness of re�ected
signatures and, respectively, that of terms and morphisms with respect to a signature)
and three for context-based re�ection (the well-formedness of re�ected contexts, that of
terms with respect to a context and that of substitutions).

52

Re�ecting Signatures Hence, in the setting of a general signature-based re�ective
theory, apart from re�ecting terms and morphisms, we can also think of re�ecting signa-
tures. To this end, and in line with the previous syntactical extensions to the basic type
theory in Section 3, we introduce the following signature re�ection primitives (see Table
5.4).

At the object level, we have the type ~S of extensions of a named signature S by a set
of declarations Σ, and the corresponding type of morphisms out of such extensions. One
can view an extended signature T = Σ + S as containing an inclusion morphism, which
copies all declaration from S into the target signature. This signature arises as a pushout
construction, as illustrated in Figure 5.4.

S T

Σ + S σ(Σ) + T

σ

σ, idΣ

Figure 5.4: Signature Extensions

Next, dΣeS introduces the re�ection of the signature declaration Σ and, conversely,
bucS introduces the evaluation of the named signature declaration S. Note that by
allowing the re�ection of signatures, we can have signatures which re�ect themselves or
that contain objects whose type is given by a re�ected signature. This may cause our
theory to become impredicative and, hence, special restriction have to be made, which
constitute an open question.

Grammar Typing Judgment Equality Judgment

Theory graphs (G) G ::= · | G, sig S = {Σ} ` G TGph ` G = G′

Frame stacks (W) W ::= · | W, (S, Γ) `G W Stack `G W = W ′

Signatures (Σ) Σ ::= · | Σ, c : E | S `G Σ Sig `G Σ = Σ′

Morphisms (σ) σ ::= · | σ, c/E W `G σ : S W `G σ = σ′ : S

Contexts (Γ) Γ ::= · | Γ, x : E W `G Γ Ctx W `G Γ = Γ′

Substitutions (γ) γ ::= · | γ, x/E W `G γ : Γ W `G γ = γ′ : Γ

Expressions (E, u)
E ::= c | x |type |

W `G E : E ′ W `G E = E ′E→E |E E | [E] E |
Re�ected signatures (u) ~S |dΣeS |bucS |uσ

Table 5.4: Grammar, Typing and Equality Judgments for a Type Theory with Signature
Re�ection

Let us provide a succinct description of the inference system for signature re�ection
described in Table 5.5.

53

We give an account of the typing rules, starting from the ~typ rule for the type formation
of the re�ected type corresponding to the re�ection of declarations over a named signature
S. This ~S type is well-formed with respect to a stack W and of base type type, if S
belongs to the theory graph G.

Next, we have the introduction rule ~I for the type ~S corresponding to the re�ection
of declarations with respect to a named signature S. The rule states that the quotation
dΣeS of a list of declarations Σ over a named signature S is well-formed with respect to
a stack W (and of re�ected type ~S), if the signature S, bucS, constructed by adding the
declarations in Σ to the list of declarations from S, is well-formed with respect to the
theory stack W .

Conversely, the evaluation rule ~ev states the required constraint for the well-formedness
with respect to a stack W of a signature S, bucS, built through the extension of a named
signature S with the evaluation of a quoted list of declarations u under S. In particular,
such an extended signature is well-formed, if u is well-formed under W and of re�ected
type ~S.

The ~E rule speci�es the needed conditions such that the term uσ, obtained by elimi-
nating a quoted list of declarations u by a morphism σ, is well-formed with respect to a
frame stack W and is of re�ected type ~T . Speci�cally, the morphism σ has to be well-
formed with respect to W, (T, ·), the frame stack extended with the quoted theory T and
has to map from the theory S. Also, u has to be well-formed with respect to W and of
re�ected type ~S.

Type
formation

S ∈ dom(G)
~typ

W`G ~S : type

Introduction
(re�ection)

W `G S, Σ Sig
~I

W `G dΣeS : ~S

Evaluation

W `G u : ~S
~ev

W `G S, bucS Sig

Elimination
(induction)

W `G u : ~S W, (T, ·) `G σ : S
~E

W `G uσ : ~T

Table 5.5: Inference System for Basic Type Theory with Signature Re�ection

AUni�ed Theory for Re�ection. To conclude, we give an overview of the inference
systems for term, morphism and signature re�ection in Table 5.6 and remark on the
symmetrical form of the rules.

54

Type
formation

W, (S, ·) `G A : type W >G S
↑typ

W `G ↑S A : type

S ∈ dom(G)
↓typ

W `G ↓ S : type

S ∈ dom(G)
~typ

W`G ~S : type

Introduction
(re�ection)

W, (S, ·) `G t : A W >G S
↑I

W `G dteS : ↑S A
W `G σ : S ↓I

W `G dσeS : ↓ S

W `G S, Σ Sig
~I

W `G dΣeS : ~S

Evaluation

W `G q : ↑S A ↑ev
W, (S, ·) `G bqcS : A

W `G m : ↓ S
↓ev

W `G bmcS : S

W `G u : ~S
~ev

W `G S, bucS Sig

Elimination
(induction)

W `G q : ↑S A W ` σ : S
↑E

W `G qσ : σ(A)

W `G m : ↓ S `S t : A
↓E

W `G tm : bmcS(A)

W `G u : ~S W, (T, ·) `G σ : S
~E

W `G uσ : ~T

Table 5.6: Inference System for Basic Type Theory with Re�ection

55

Chapter 6
Implementation

We base the implementation of our generic type theory with re�ection on the existing
Scala implementation of the MMT framework. The core of the API is formed by data
structures modelling the MMT language, whose simpli�ed grammar is given below, for
the sake of completeness. Also, we can remark on its similarity with that for the basic
type theory described in Section 3.

Speci�cally, signatures can be represented as MMT theories, containing symbol dec-
larations, such as constants, functions and predicates. Also, analogous to the case for
signatures, MMT theories are related via theory morphisms. However, unlike the generic
type theory previously presented, MMT is enriched with a module system, allowing one
to build large theories and morphisms, through reuse and inheritance. Moreover, at the
object-level, entities are represented as OpenMath objects, that can be truth-preservingly
translated between theories via theory morphisms.

Figure 6.1: Simpli�ed MMT Grammar

Delayed Constraint Satisfaction Particularly relevant to our extensions is the ex-
isting framework for constraint satisfaction, which makes use of a delay mechanism to
�nd solutions for all the unknown variables occurring in a given problem instance. We
give a a rough overview of the structures involved in Figure 6.

The framework's input scenario comprises of a system of constraints, given as a set
of judgments (Judgement 1, . . ., Judgement n), which may contain unknowns and which
have to be solved within a given MMT theory. This solution is a Substitution operating
on the variable declaration list of a Context, in order to provide a closed Term for every
unknown variable. A Solver class takes as arguments a individual judgment from the
constraints, the MMT-theory and the set of typing rules stored in a Controller. These

56

rules are used by the Solver to decompose the judgment, to collect partial solutions and
to delay unsolvable judgments, until further simpli�cations can lend it otherwise.

Figure 6.2: Delayed Constraint Satisfaction Work�ow Outline

MMT with Re�ected Constructs In line with the theoretical extensions to the
MMT language, we extend the implementation with the notion of a Frame, formed by
taking the pairing of a theory and a context. This extension serves the purpose of enabling
the bookkeeping of quoted theories and of their corresponding contexts. Indeed, these
are stored in a Stack, implemented as a list of frames and containing the newest quoted
theory along with its context, as the top-level entry. The idea of introducing a stack
of frames stems from programming languages, which pervasively use execution stacks
to store information about the subroutines of a program, i.e the address to which each
active subroutine should return control upon completing execution, local data storage
or parameter values. In our setting, by using quotation, every theory and term of that
theory can be used as a function. Thus, the quotation operator acts as a function call
that is not committed to any particular function, but that can instead take any term
from a quoted theory as one. Such a function is not parametrically constrained; instead,
whenever we want a value we can draw back to it by evaluation, by looking into what
arguments were passed.

The re�ection of terms and that of morphisms are implemented orthogonally, thus
facilitating future work on large-scale case studies. In the case of the �rst feature, that
of term re�ection, we construct a separate object containing the MMT document level

57

path (base), the module level path of the theory �TermRe�ection� (theory), as well as
a method for de�ning constants of this new theory (constant). The primitive constants
are given by that for the base type (ttype) and by the intro, elim, rtype and eval

constants pertaining to each primitive term re�ection construct, which we will proceed
to explaining in detail bellow.

ob j e c t Re f l e c t i o n {
va l base = new DPath(u t i l s .URI(" http " , " cds . omdoc . org ") / " foundat ions "

/ " r e f l e c t i o n " / " te rmRe f l e c t i on . omdoc")
va l theory = base ? "TermRef lect ion "

4 de f constant (name : S t r ing) : GlobalName = theory ? name
va l i n t r o = constant (" i n t r oduc t i on ")
va l e l im = constant (" e l im ina t i on ")
va l rtype = constant (" r e f l t y p e ")
va l eva l = constant (" eva lua t i on ")

9 va l ttype = constant (" type ")
}

6.1 MMT with Term Re�ection

6.1.1 Syntax

To start with, from an implementation perspective, in our new theory for term re�ection,
new expressions are formed by re�ecting terms over signatures (TermRefl), evaluating
re�ected terms (TermEval), forming the re�ected type of all re�ected terms of a given
term (ReflType) and applying a morphism to the quotation of a term (TermElim). These
primitive constructs are implemented as separate objects containing apply and extractor
methods for the Scala constructor and pattern matcher.

The TermRefl object, for term re�ection introduction, takes as arguments two terms,
namely the term to be quoted and the theory corresponding to the signature over which
the term is quoted. It is formed by applying the intro constant (OMS(Reflection.intro))
to the list of arguments. Making this quali�cation will serve a later purpose, when
pattern-matching on a term, to identify the used constructors and, thus, be able to de-
termine which inference rule to apply to further simplify it. Conversely, the object is
destructed into the option pair consisting of the theory and the re�ected term.

ob j e c t TermRefl {
de f apply (theory : Term , term : Term) = OMA(OMS(Re f l e c t i o n . i n t r o) , L i s t (

theory , term))
de f unapply (t : Term) : Option [(Term ,Term)] = t match {

case OMA(OMS(Re f l e c t i o n . i n t r o) , L i s t (thy , tm)) => Some ((thy , tm)
)

5 case _ => None
}

}

The implementation for the TermEval term evaluation object is similar. In order to
obtain the ReflType re�ected type and the TermElim elimination form, their correspond-
ing objects take as arguments the type of the re�ected terms and the theory over which

58

they were quoted and, respectively, a re�ected term and the morphism to be applied to
it. The rest is analogous.

Example 6. Encoding the Natural Numbers.

As a test case for our implementation, we encode in MMT the natural number example
presented above. The meta-level theory Nat is introduced as a new declared LF-theory
and is added to the controller. The constructors nat, zero and succ are given as named,
unde�ned, constants within the parent theory OMID(Nat.path). Their type is formed us-
ing the corresponding LF type constructors LF.ktype and Arrow, as seen in the signature
presentation of Nat.

// the meta−l e v e l theory o f natura l numbers
va l Nat = new DeclaredTheory (te s tbasenat , LocalPath (L i s t ("Nat")) ,

Some (LF . l f t h e o r y))
3 c o n t r o l l e r . add (Nat)

// g ene r i c type o f natura l numbers in the theory Nat
va l nat = new Constant (OMID(Nat . path) ,

LocalName (" nat ") ,
8 Some(LF . ktype) , None , None , None)

c o n t r o l l e r . add (nat)

// zero con s t ruc to r in the theory Nat
va l ze ro = new Constant (OMID(Nat . path) ,

13 LocalName (" zero ") ,
Some(OMID(nat . path)) , None , None , None)

c o n t r o l l e r . add (zero)

// su c c e s s o r con s t ruc to r in the theory Nat
18 va l succ = new Constant (OMID(Nat . path) ,

LocalName (" succ ") ,
Some(Arrow(OMID(nat . path) ,OMID(nat . path))) , None , None , None)

c o n t r o l l e r . add (succ)

We declare NatR as the previously stated natural numbers theory with re�ection and
de�ne its constructors as follows. The re�ection type nat_refl is introduced as con-
stant of kind type LF.ktype, whose de�nens is a MMT-term obtained by calling the
ReflType constructor with the parent theory OMMOD(NatR.path) and the constant term
OMID(nat.path) as arguments. Likewise, the 0 zero constructor zero is given by the
re�ected term TermRefl(OMMOD(NatR.path), OMID(zero.path)) formed from the con-
stant OMID(zero.path) being quoted over the parent theory OMMOD(NatR.path). Lastly,
the s successor constructor has function type Arrow(OMID(nat_refl.path),OMID(nat_refl.path))
and is de�ned as the re�ection of OMID(succ.path) over the parent theory OMMOD(NatR.path).

// the r e f l e c t e d theory o f natura l numbers
va l NatR = new DeclaredTheory (te s tbasenat2 , LocalPath (L i s t ("NatR")) ,

Some (LF . l f t h e o r y))
c o n t r o l l e r . add (NatR)

4

// r e f l e c t e d type o f natura l numbers in the theory NatR
va l nat_re f l = new Constant (OMID(NatR . path) ,

LocalName ("NN") ,

59

Some(LF . ktype) , Some(ReflType (OMMOD(NatR . path) , OMID(nat . path))) ,
None , None)

9 c o n t r o l l e r . add (nat_re f l)

// zero con s t ruc to r r e f l e c t e d from the theory Nat down to the theory
NatR

va l z e r o_re f l = new Constant (OMID(NatR . path) ,
LocalName ("0") ,

14 Some(OMID(nat_re f l . path)) , Some(TermRefl (OMMOD(NatR . path) , OMID(
zero . path))) , None , None)

c o n t r o l l e r . add (z e r o_re f l)

// su c c e s s o r con s t ruc to r r e f l e c t e d from the theory Nat down to the
theory NatR

va l suc c_re f l = new Constant (OMID(NatR . path) ,
19 LocalName (" s ") ,

Some(Arrow(OMID(nat_re f l . path) ,OMID(nat_re f l . path))) , Some(
TermRefl (OMMOD(NatR . path) , OMID(succ . path))) , None , None)

c o n t r o l l e r . add (suc c_re f l)

6.1.2 Proof Theory

In the following, we present the implementation of the inference system for term re�ection
described in Section 4.2. Note that the theory graph G collecting all declared theories
is never used in the implementation and is stated for completeness purposes. Also not
present in the implementation is a theory well-ordering check, for the <G relation, occur-
ing in the statement of the type formation and introduction rules (see Table 4.2).

Typing Rules. As seen in Section 6.1.1, type inference (well-formedness) is dealt
with using a constraint-based approach, in that the bottom-up type inference rules collect
type constraints that later need to be solved.

Let us give a more detailed account of the rules, starting from that for the type
formation ↑typ of the re�ected type corresponding to quoted terms with type A, under
a named signature (theory) S (see Table 4.2). Its implementation is realized via the
TypeReflectionRule object extending the InferenceRule class, designed to infer the
type of an expression. The apply method takes as arguments a solver, which consists of
a controller, a speci�c theory and a set of unknown meta-variables, as well as a term tm

and an implicit stack of frames. This procedure is called on a typing judgement for the
term tm, whose type is unknown. Once the term has been matched to ReflType(s,a),
the re�ected type of quoted terms of type a over a signature s, there is a callback to the
type inference method inferType with a as argument.

ob j e c t TypeRef lect ionRule extends In f e r enceRu l e (Re f l e c t i o n . rtype) {
de f apply (s o l v e r : So lve r) (tm : Term) (imp l i c i t s tack : Stack) : Option [Term]

=
tm match {

4 case ReflType (s , a) => so l v e r . in ferType (a)
case _ => None

}
}

60

Next, we have the introduction rule ↑I for the type ↑S A of re�ected terms over a
named signature S. Analogous to the previous case, the implementation TermReflectionRule
mirrors the theoretical formulation of the rule (see Section 4.2), with inferType be-
ing called on the term t, once the apply method pattern-matches the argument tm to
TermRefl(s,t), a quoted term t over a signature s.

ob j e c t TermReflect ionRule extends In f e r enceRu l e (Re f l e c t i o n . i n t r o) {
de f apply (s o l v e r : So lve r) (tm : Term) (imp l i c i t s tack : Stack) : Option [Term]

=
3 tm match {

case TermRefl (s , t) => so l v e r . in ferType (t)
case _ => None

}
}

The evaluation rule ↑ev states that the evaluation of a quoted term q under a named
signature S is well-formed with respect to the extended stack W, (S, ·) and has type A, if
q is well-formed under W and has the re�ected type ↑S A over S. Note that, when type
checking evaluations, the top-level frame recording the quoted theory and its context is
popped from the stack. Thus, it is necessary to perform an additional check against the
frame stack being empty, as seen below.

ob j e c t ReflTermEvalRule extends In f e r enceRu l e (Re f l e c t i o n . eva l) {
de f apply (s o l v e r : So lve r) (tm : Term) (imp l i c i t s tack : Stack) : Option [Term]

=
3 tm match {

case TermEval (s , q) =>
i f (! s tack . frames . isEmpty) {
s o l v e r . in ferType (q)
}

8 e l s e None
case _ => None

}
}

The �nal rule ↑E, namely that for morphism elimination is the most involved. In
particular, the elimination of a quoted term q through a morphism σ is well-formed with
respect to the stackW (and has type σ(A)), if two constraints are satis�ed. Firstly, q has
to be well-formed with respect to W and have the re�ected type ↑S A of quoted terms of
type A over S. Secondly, the morphism σ has to be well-formed with respect to W and
translate terms from the theory S.

ob j e c t El imRef l ec t ionRule extends In f e r enceRu l e (Re f l e c t i o n . e l im) {
imp l i c i t de f pCont (p : Path) {}
de f apply (s o l v e r : So lve r) (tm : Term) (imp l i c i t s tack : Stack) : Option [Term

] = {
4 tm match {

case Elim (q ,mor) =>
i f (! s tack . frames . isEmpty) {

s o l v e r . in ferType (q) match {
case None => None

9 case Some(ReflType (s , a)) => Some(s o l v e r . c o n t r o l l e r . checker .
checkMorphism (mor , s , s tack . theory))

case _ => None

61

}
}
e l s e None

14 case _ => None
}

}
}

Equality Rules. We �rst remark on the fact that the introduction and elimination
rules for re�ected terms are straight-forwardly stating that quotation and morphism ap-
plication preserve term equality. This is given to us for free within the framework of the
system and needs no implementation.

The computation =t
I , soundness =t

sound and completeness =t
compl rules are implemented

as instances of the ComputationRule class, aimed at simplifying expressions operating
at the toplevel of the term.

According to the computation rule, the term dteσS obtained by applying a morphism
σ to a re�ected term dteS is equal to that obtained by applying the meta-level morphism
σ to the term t with respect to the frame W , given that, in turn, σ is well-formed with
respect to W .

The apply procedure of the corresponding ComputationReflectionRule matches on
the term argument tm for the elimination form Elim(TermRefl(s,t),mor) of a re�ected
term t through a morphism mor. If the stack frame is non-empty and if the mor-
phism the term is eliminated with is well-formed, the method returns the application
OMA(mor,List(t)) of the morphism mor to the singleton list containing t.

ob j e c t Computat ionRef lect ionRule extends ComputationRule (Re f l e c t i o n . e l im) {
imp l i c i t de f pCont (p : Path) {}

3 imp l i c i t va l s tack = Stack (L i s t ())
de f apply (s o l v e r : So lve r) (tm : Term) (imp l i c i t s tack : Stack) : Option [Term]

= {
tm match {

case Elim (TermRefl (s , t) ,mor) =>
i f (! s tack . frames . isEmpty) {

8 t ry {
s o l v e r . checkMorphism (mor , s)

}
catch {
case e : Error => f a l s e

13 }
Some(OMA(mor , L i s t (t)))
}
e l s e None

case _ => None
18 }

}
}

Next, the soundness rule states that a well-formed term is preserved via quoting and
then evaluating the result over the same theory S, i.e that quotation and evaluation are
partially inverse operations. The implementation of the rule follows analogously with
a equality check for the theories s1, s2, over which one is quoting and, respectively,
evaluating.

62

ob j e c t SoundnessRef l ect ionRule extends ComputationRule (Re f l e c t i o n . eva l) {
de f apply (s o l v e r : So lve r) (tm : Term) (imp l i c i t s tack : Stack) : Option [Term]

= {
tm match {

case TermEval (s1 , TermRefl (s2 , t)) =>
5 i f (s1 == s2)

Some(t)
e l s e

None
case _ => None

10 }
}

}

Similarly to the soundness rule, the completeness rule asserts that, by �rst evaluating
a re�ected term q under a theory S and then re�ecting it over the same theory, the result
q′ is equal to q under a frame stack W , if equality holds between q and q′. Together with
the previous result, this introduces quotation and evaluation as inverse to each other.

As before, the apply method of the CompletenessReflectionRule matches the ar-
gument term tm against the evaluation-quotation term TermRefl(s1,TermEval(s2,t)),
checking for the equality of theories s1 and s2. Given that the two are equal, we have to
infer the re�ected type ReflType(s,a), in order to extract the theory s that has to match
the previous ones. Thus, we make sure that the inverse re�ection operation applications
maintain the term they are apply to in the same theory.

ob j e c t CompletenessRef l ect ionRule extends ComputationRule (Re f l e c t i o n . i n t r o)
{

de f apply (s o l v e r : So lve r) (tm : Term) (imp l i c i t s tack : Stack) : Option [Term]
= {

3 tm match {
case TermRefl (s1 , TermEval (s2 , t)) =>

i f (s1 == s2) {
s o l v e r . in ferType (tm) match {

case Some(ReflType (s , a)) => s == s2
8 case _ => f a l s e

}
Some(t)
}
e l s e None

13 case _ => None
}

}
}

Finally, conforming to the extensionality re�ection rule, equality between two well-
formed quoted terms q and q′, with respect to a frameW is preserved by evaluation under
a theory S with respect to the extended frame W, (S, ·). The implementation matches
the rule exactly, save for the additional check for equality between the theories s1 and
s2 the terms are quoted over. While the previous rules in this section extended the
ComputationRule class, extensionality is realized via a EqualityRule, that checks ex-
pression equality, returning a boolean. Also, trivially note that, since we can only evaluate
previously quoted terms, there is no need for an analogous complementary rule stating

63

the extensionality of quotation application; this holds, however, due to completeness.

ob j e c t Ex t en s i ona l i t yRe f l e c t i onRu l e extends Equal i tyRule (Re f l e c t i o n . i n t r o) {
de f apply (s o l v e r : So lve r) (tm1 : Term , tm2 : Term , tp : Term) (imp l i c i t s tack :

Stack) : Boolean = {
(tm1 , tm2) match {

4 case (TermRefl (s1 , t1) , TermRefl (s2 , t2)) =>
i f (s1 == s2) {

s o l v e r . checkEqual i ty (TermEval (s1 , t1) ,TermEval (s2 , t2) ,None)
}
e l s e f a l s e

9 case (_,_) => f a l s e
}

}
}

In addition to the theoretical rules stated in Table 4.3, we have implemented solu-
tion rules SolveEvalReflectionRule and SolveReflReflectionRule, to determine the
value of unknowns situated inside evaluations and, respectively, inside quotations. In-
deed, a term tm2 is equal to the evaluation TermEval(s,x) of an unknown term x under
a theory s, if this term is equal to the re�ection of tm2 over s, as established through the
checkEquality method. The rule SolveReflReflectionRule for solving the value of a
re�ected unknown over a given theory proceeds in the same manner, using the invertibility
of quotation with respect to evaluation.

ob j e c t So lveEva lRe f l e c t i onRu le extends So lut ionRule (Re f l e c t i o n . eva l) {
de f apply (s o l v e r : So lve r) (tm1 : Term , tm2 : Term) (imp l i c i t s tack : Stack) :

Boolean = {
3 tm1 match {

case TermEval (s , x) => so l v e r . checkEqual i ty (x , TermRefl (s , tm2) ,None)
case _ => f a l s e

}
}

8 }

6.2 MMT with Morphism Re�ection

Syntax. In practice, the objects used to represent the morphism re�ection constructs
are very similar to those used in the previous section. As a result, we will only discuss
the case for morphism elimination, modelled by MorphElim.

To this purpose, let us �rst look at how we encode morphisms. To start with, the
contents of a morphism are represented using the class Record, as lists of pairings con-
taining constants (given relative to a module through a LocalName) and terms (Term)
that are assigned to these constants. Speci�cally, a morphism's body is coded to be a
OMREC object, while masking the low-level details of using lists in the implementation.
This is done by relating Record to OpenMath's OMATTR, which takes as arguments a term
without attribution, a key (constant) and a corresponding value (constant assignment).

case c l a s s Record (f i e l d s : L i s t [(LocalName ,Term)]) {
2 }

64

ob j e c t OMREC {
va l recordkey = u t i l s .mmt. mmtbase ? " r e c o r d l a b e l "
va l recordSymbol = u t i l s .mmt. mmtbase ? " r e co rd s " ? " record "

7 de f apply (r : Record) : Term = r match {
case Record (f i e l d s) =>

f i e l d s match {
case (k , v) : : l => OMATTR(apply (Record (l)) , OMID(recordkey ? k) , v)
case Ni l => OMID(recordSymbol)

12 }
}
de f unapply (m : Term) : Option [Record] = m match {

case OMATTR(arg , key , va lue) => key . path match {
case GlobalName (OMMOD(t h i s . recordkey) , name) =>

17 unapply (arg) match {
case Some(Record (f i e l d s)) => Some(Record ((name , va lue) : : f i e l d s))
case None => None // should be i l l e g a l

}
case _ => None

22 }
case OMID(t h i s . recordSymbol) => Some(Record (Ni l))
case _ => None

}
}

Finally, morphisms are encoded through ExplicitMorph, comprising of methods for
application and extraction. In particular, an explicit morphism is formed by spec-
ifying its contents (rec) and the theory (dom) it maps from. These arguments are
passed to the apply method, which returns a term is constructed by applying the
OMID(mmt.explmorph) constant formed through the MMT-reference to a list containing
the target theory dom and the morphism's assignments. The destructor method extracts
these components from the term denoting an explicit morphism.

ob j e c t Explic itMorph {
de f apply (r ec : Record , dom : Term) : Term = OMA(OMID(mmt. explmorph) ,

L i s t (dom, OMREC(rec)))
de f unapply (m : Term) : Option [(Record , Term)] = m match {

4 case OMA(OMID(mmt. explmorph) , L i s t (dom, OMREC(rec))) => Some ((rec , dom)
)

case _ => None
}

}

As previously mentioned, the tm construct (see Table 5.4) for elimination is imple-
mented via MorphElim, analogously to the constructs for term re�ection. Speci�cally,
given a term t and a re�ected morphism mor, the apply method matches mor to be an
explicit morphism and t to be a constant OMID(path). If the constant is found among
the record's �elds, its corresponding value is returned. If t does not match a constant the
procedure returns the application of the OMS(ReflectionMorph.elim) symbolic reference
to a list comprising of t and mor. The unapply procedure is straight-forward.

ob j e c t MorphElim {
de f apply (t : Term , mor : Term) = mor match {

3 case Expl ic itMorph (rec , dom) => t match {

65

case OMID(path) => rec . f i e l d s . f i nd (localName => Some(localName ._1) ==
path . t oTr ip l e ._3) match {

case Some(pa i r) => pa i r ._2
}

}
8 case _ => OMA(OMS(Ref lect ionMorph . e l im) , L i s t (t , mor))

}
de f unapply (t : Term) : Option [(Term ,Term)] = t match {

case OMA(OMS(Ref lect ionMorph . e l im) , L i s t (t , mor)) => Some ((t , mor))
case _ => None

13 }
}

Proof Theory. The implementation of the inference rules matches their theoretical
descriptions given in Section 5.1. As the corresponding objects used to model them are
very similiar to each other, we limit ourselves to discussing only the re�ection typing rule
↓E for morphism elimination. The apply procedure of the encoded inference rule takes a
solver, and a term tm de�ned with respect to a frame stack. If the term matches the
re�ection MorphElim construct for elimination, we proceed to further checking its type.
If its inferred type matches the re�ected morphism type, then we continue to checking
the well-formedness of the morphism mor via the checkMorphism method.

1 ob j e c t MorphElimReflectionRule extends In f e r enceRu l e (Ref lect ionMorph . e l im)
{

imp l i c i t de f pCont (p : Path) {}
de f apply (s o l v e r : So lve r) (tm : Term) (imp l i c i t s tack : Stack) : Option [Term

] = {
tm match {

case MorphElim(q ,mor) =>
6 i f (! s tack . frames . isEmpty) {

s o l v e r . in ferType (q) match {
case None => None
case Some(MorphReflType (s , a)) => Some(s o l v e r . c o n t r o l l e r . checker

. checkMorphism (mor , s , s tack . theory))
case _ => None

11 }
}
e l s e None

case _ => None
}

16 }
}

Let us examine the details of how the morphism check is implemented. The method
takes as arguments a morphism term mor, its domain theory from and the frame stack,
which stores, at the top-level, the morphism's codomain theory. Due to the module
system, theories are not stored directly as lists of declarations. However, these theories are
denoted via a speci�c MMT term, namely OMMOD(p), where the path p is used to retrieve
the actual theory object. Looking at the corresponding object for the morphism's target
theory, we investigate the two existing possibilities: that it is a de�ned theory (thdf) and
that it is a declared theory thd containing a list of symbols: constants or imports. In
the former case, we take the de�niens and recurs. In the latter, we extract the clist list
of constants, by �ltering out the symbols corresponding to imports, since they are not

66

relevant for our purposes. Matching the morphism mor to be an explicit morphism with
body rec and source theory dom, we �rst check that dom indeed matches the argument
from passed as an initial argument. We then order the list of constants in the morphism
mor, thus obtaining ocassig. For every constant in the domain theory, we test whether
the local names match those in the morphism and, if such is the case, we continue by
type checking the constants in the usual way.

de f checkMorphism (mor : Term , from : Term) (imp l i c i t s tack : Stack) :
Boolean = {

log (" typing : " + stack . theory + " |− " + mor + " : " + from)
3 r epor t . indent

va l r e s : Boolean = from match {
case OMMOD(p) => c o n t r o l l e r . globalLookup . getTheory (p) match {

case thdf : DefinedTheory => checkMorphism (mor , thdf . df)
case thd : DeclaredTheory =>

8 va l c l i s t : L i s t [Dec la ra t i on] = thd . va l u eL i s t f i l t e r (p => ! p .
i s I n s t anc eO f [S t ruc ture])

mor match {
case Expl ic itMorph (rec , dom) =>

i f (from == dom)
{

13 va l o c a s s i g = rec . f i e l d s . sortWith ((x , y) => x ._1 . t oS t r i ng
() <= y ._1 . t oS t r i ng ())

i f (c l i s t .map(_. name) == oca s s i g .map(_._1)) {
(c l i s t z ip o c a s s i g) f o r a l l (pa i r =>
{
inferType (OMID(pa i r ._1 . path)) match {

18 case Some(tp) => checkTyping (pa i r ._2 ._2,OMM(tp ,mor
))

case None => true
}

})
}

23 e l s e f a l s e
}
e l s e f a l s e

case _ => f a l s e
}

28 case _ => f a l s e
}
case _ => f a l s e

}
r epor t . unindent

33 r e s
}

The equality rules for re�ected morphisms are analogous to those for re�ected terms
presented in Section 6.1 and are summarized in Table 5.2. We refrain from explaining
the implementation of all the rules and limit ourselves to just the =m

C computation rule.
The corresponding ComputationMorphReflectionRule object takes a solver, a term tm

de�ned with respect to a frame stack and tries to simplify tm according to the rule de-
scribed above. Concretely, if tm matches the construct MorphElim(t, MorphRefl(s,m)),
formed by eliminating a term t with the re�ection MorphRefl(s,m) of a morphism mmap-
ping from s, the term can be reduced to the application OMA(MorphRefl(s,m),List(t)

67

of MorphRefl(s,m) to a list containing t. In line with the statement for =m
C , this simpli-

�cation can be made only if the re�ected morphism MorphRefl(s,m) is well-formed with
respect to the theory s.

1 ob j e c t ComputationMorphReflectionRule extends ComputationRule (
Ref lect ionMorph . e l im) {

imp l i c i t de f pCont (p : Path) {}
imp l i c i t va l s tack = Stack (L i s t ())
de f apply (s o l v e r : So lve r) (tm : Term) (imp l i c i t s tack : Stack) : Option [Term

] = {
tm match {

6 case MorphElim(t , MorphRefl (s ,m)) =>
i f (! s tack . frames . isEmpty) {
try {

s o l v e r . checkMorphism (MorphRefl (s ,m) , s)
}

11 catch {
case e : Error => f a l s e

}
Some(OMA(MorphRefl (s ,m) , L i s t (t)))

}
16 e l s e None

case _ => None
}

}
}

68

Chapter 7
Conclusion

As we have emphasized in the introductory sections, the concept of re�ection is a fun-
damental one and, although it is largely present in computer science, it is not as well-
understood foundationally. The bene�ts of conceptually grasping re�ection in a formal
setting are two-fold. On the one hand, the impact on the development and design of
type theories in the large is substantial, if we have in mind advanced meta-reasoning
features that can be supported through having re�ection. On the other hand, being able
to deal with meta-theoretical foundations and to con�ate meta-levels leads to increased
expressivity, elegance and �exibility in terms of implementation and system integration.

To the best of the author's knowledge, re�ection has been mostly studied from the
perspective of enabling its addition on top of existing type theories. The approach we
undertake di�ers in that, starting from re�ection as a central property, we seek to recover
type theoretical features. In doing so, we focus on re�ecting terms, which leads to obtaining
inductive datatypes, like the one for natural numbers, and on re�ecting morphisms, which
leads to obtaining recursive datatypes.

In this project we have developed a MMT-extension for signature-based re�ection,
supporting as features the re�ection of terms and that of types. We have implemented
their corresponding syntax and proof theory and tested it on a case-study aimed at
encoding the theory of natural numbers with re�ection. The example presented validates
the claim that mathematical operations can be expressed naturally using re�ection and
paves the way for future large-scale investigation.

A primary future goal is to realize this potential through developing the theoretical
framework to a su�cient breadth of coverage, as to enable it to handle complex hierar-
chical mathematical and logical theories and morphisms. Particularly, such a re�ective
system should be able to support dependent inductive types, parameterized model func-
tors, quotient types, self-re�ecting signatures and to satisfy abstract adequacy. More
elaborate case studies could be developed to identify and test more desirable proper-
ties that can facilitate the formalization of a wider scope of mathematical and logical
constructs, while preserving compactness and naturality.

An exhaustive theory of re�ection would support six such features (re�ected meta-
judgements): three for signature-based re�ection (the well-formedness of re�ected signa-
tures and, respectively, that of terms and morphisms with respect to a signature) and
three for context-based re�ection (the well-formedness of re�ected contexts, that of terms

69

with respect to a context and that of substitutions). Along similar lines as previously,
when re�ecting in context, once can obtain function and, respectively, product types.
Future work could be aimed at providing a theoretical and implementational account of
context-based re�ection.

Moreover, an interesting direction for future research would be that of exploiting the
bene�ts of working within a module system, an aspect which has been disregarded in
our work, for simpli�cation purposes. As includes between re�ected signatures lead to
subtyped relations, we would thus obtain subtypes. Also, such a re�ective module system
would give a way to, for example, extend inductive datatypes and to extend inductive
de�nitions with cases.

70

Bibliography

[ACS86] L. Aiello, C. Cecchi, and D. Sartini. Representation and Use of Metaknowledge.
Proceedings of the IEEE, 74(10):1304 � 1321, oct. 1986.

[AR00] P. Aczel and M. Rathjen. Notes on Constructive Set Theory, 200.

[Art99] S. Artëmov. On Explicit Re�ection in Theorem Proving and Formal Veri�cation.
In CADE, pages 267�281, 1999.

[AW75] M. Aiello and R. W. Weyhrauch. Checking proofs in the metamathematics of
�rst order logic. In IJCAI'75, pages 1�8, 1975.

[Bar91] H. Barendregt. Introduction to Generalized Type Systems. J. Funct. Program.,
1(2):125�154, 1991.

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq'Art: The Calculus of Inductive Constructions, 2004.

[Bro07] L. E. J. Brouwer. Over de Grondslagen der Wiskunde. Dissertation, Doctoral
Thesis, University of Amsterdam, 1907.

[CH85] T. Coquand and G. P. Huet. Constructions: A Higher Order Proof System for
Mechanizing Mathematics. In Invited Lectures from the European Conference
on Computer Algebra-Volume I - Volume I, pages 151�184, London, UK, 1985.
Springer-Verlag.

[Chu40] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5:56�68, 1940.

[CP90] T. Coquand and C. Paulin. Inductively de�ned types. In Proceedings of the
international conference on Computer logic, pages 50�66, New York, NY, USA,
1990. Springer-Verlag New York, Inc.

[dB70] N. de Bruijn. The mathematical language AUTOMATH. volume 25 of Lecture
Notes in Mathematics, pages 29�61. Springer-Verlag, Berlin, 1970.

[Far07a] W. M. Farmer. Chiron: A multi-paradigm logic. pages 1�19, 2007.

71

[Far07b] W. M. Farmer. Chiron: A set theory with types, unde�nedness, quotation, and
evaluation. Technical report, McMaster University, 2007.

[Fef62] S. Feferman. Trans�nite Recursive Progressions of Axiomatic Theories. J. Symb.
Log., 27(3):259�316, 1962.

[Fre79] G. Frege. Begri�sschrift: eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens, 1879.

[G�31] K Gödel. Über Formal Unentscheidbare Sätze der Principia Mathematica und
Verwandter Systeme, I., 1931.

[Gan99] H. Ganzinger, editor. Automated Deduction - CADE-16, 16th International
Conference on Automated Deduction, Trento, Italy, July 7-10, 1999, Proceedings,
volume 1632 of Lecture Notes in Computer Science. Springer, 1999.

[GB92] J. Goguen and R. Burstall. Institutions: abstract model theory for speci�cation
and programming. J. ACM, 39(1):95�146, 1992.

[Gor88] M. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In
G. Birtwistle and P. Subrahmanyam, editors, VLSI Speci�cation, Veri�cation
and Synthesis, pages 73�128. Kluwer-Academic Publishers, 1988.

[GR01] J. Goguen and G. Rosu. Institution morphisms. Formal aspects of computing,
to appear, 2001.

[Hag87] T. Hagino. A Categorical Programming Language. Technical report, 1987.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. JACM:
Journal of the ACM, 40, 1993.

[Hil23] D. Hilbert. Die Grundlagen Der Elementaren Zahlentheorie, 1923.

[HR09] F. Horozal and F. Rabe. Representing Model Theory in a Type-Theoretical Log-
ical Framework. In Fourth Workshop on Logical and Semantic Frameworks, with
Applications, volume 256 of Electronic Notes in Theoretical Computer Science,
pages 49�65, 2009.

[LS11] J. Lambek and P. J. Scott. Re�ections on a categorical foundations of mathe-
matics, 2011.

[Mae87] P. Maes. Concepts and experiments in computational re�ection. SIGPLAN
Not., 22:147�155, December 1987.

[Mes89] J. Meseguer. General logics. In Proc. Logic Colloquium '87. North Holland, 1989.

[Mil72] R. Milner. Implementation and applications of Scott's logic for computable func-
tions. SIGACT News, pages 1�6, January 1972.

[ML84] P. Martin-Löf. Intuitionistic Type Theory, 1984.

72

[Myh73] J. Myhill. Some properties of intuitionistic Zermelo�Fraenkel set theory. In
Cambridge Summer School in Mathematical Logic, volume 337 of Lecture Notes
in Mathematics, pages 206�231. Springer, Berlin, 1973.

[Neu25] J. Neumann. Eine Axiomatisierung der Mengenlehre. J. Reine Angew. Math.,
154:219�240, 1925.

[Pau94] L. Paulson. Isabelle: a generic theorem prover, volume 828 of LNCS. Springer-
Verlag, 1994.

[Per85] D. Perlis. Languages With Self-Reference I: Foundations. Artif. Intell., 25(3):301�
322, 1985.

[R. 86] R. L. Constable et al. Implementing mathematics with the Nuprl proof develop-
ment system. Prentice Hall, 1986.

[Rab09] F. Rabe. The MMT Language and System. 2009.

[Ram26] F. P. Ramsey. Mathematical Logic, 1926.

[RS09] F. Rabe and C. Schürmann. A Practical Module System for LF. In Proceedings of
the Workshop on Logical Frameworks Meta-Theory and Practice (LFMTP), 2009.

[Smi82] B. C. Smith. Re�ection and Semantics in a Procedural Language. PhD thesis,
1982.

[Smi84] B. C. Smith. Re�ection and Semantics in Lisp. In POPL, pages 23�35, 1984.

[WR13] A. Whitehead and B. Russell. Principia Mathematica, 1913.

73

	Introduction
	Related Work
	State of the Art
	State of the Craft

	Basic Type Theory
	Syntax
	Proof Theory
	Semantics
	Soundness

	Reflecting Terms
	Syntax
	Proof Theory
	Semantics
	Soundness

	Towards a General Theory of Reflection
	Reflecting Morphisms
	Reflection Perspectives

	Implementation
	MMT with Term Reflection
	Syntax
	Proof Theory

	MMT with Morphism Reflection

	Conclusion

